Batch Normalization Preconditioning for Neural Network Training
- URL: http://arxiv.org/abs/2108.01110v1
- Date: Mon, 2 Aug 2021 18:17:26 GMT
- Title: Batch Normalization Preconditioning for Neural Network Training
- Authors: Susanna Lange, Kyle Helfrich, Qiang Ye
- Abstract summary: Batch normalization (BN) is a popular and ubiquitous method in deep learning.
BN is not suitable for use with very small mini-batch sizes or online learning.
We propose a new method called Batch Normalization Preconditioning (BNP)
- Score: 7.709342743709842
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Batch normalization (BN) is a popular and ubiquitous method in deep learning
that has been shown to decrease training time and improve generalization
performance of neural networks. Despite its success, BN is not theoretically
well understood. It is not suitable for use with very small mini-batch sizes or
online learning. In this paper, we propose a new method called Batch
Normalization Preconditioning (BNP). Instead of applying normalization
explicitly through a batch normalization layer as is done in BN, BNP applies
normalization by conditioning the parameter gradients directly during training.
This is designed to improve the Hessian matrix of the loss function and hence
convergence during training. One benefit is that BNP is not constrained on the
mini-batch size and works in the online learning setting. Furthermore, its
connection to BN provides theoretical insights on how BN improves training and
how BN is applied to special architectures such as convolutional neural
networks.
Related papers
- Overcoming Recency Bias of Normalization Statistics in Continual
Learning: Balance and Adaptation [67.77048565738728]
Continual learning involves learning a sequence of tasks and balancing their knowledge appropriately.
We propose Adaptive Balance of BN (AdaB$2$N), which incorporates appropriately a Bayesian-based strategy to adapt task-wise contributions.
Our approach achieves significant performance gains across a wide range of benchmarks.
arXiv Detail & Related papers (2023-10-13T04:50:40Z) - An Adaptive Batch Normalization in Deep Learning [0.0]
Batch Normalization (BN) is a way to accelerate and stabilize training in deep convolutional neural networks.
We propose a threshold-based adaptive BN approach that separates the data that requires the BN and data that does not require it.
arXiv Detail & Related papers (2022-11-03T12:12:56Z) - Understanding the Failure of Batch Normalization for Transformers in NLP [16.476194435004732]
Batch Normalization (BN) is a technique to accelerate the training of deep neural networks.
BN fails to defend its position in Natural Language Processing (NLP), which is dominated by Layer Normalization (LN)
Regularized BN (RBN) improves the performance of BN consistently and outperforms or is on par with LN on 17 out of 20 settings.
arXiv Detail & Related papers (2022-10-11T05:18:47Z) - Continual Normalization: Rethinking Batch Normalization for Online
Continual Learning [21.607816915609128]
We study the cross-task normalization effect of Batch Normalization (BN) in online continual learning.
BN normalizes the testing data using moments biased towards the current task, resulting in higher catastrophic forgetting.
We propose Continual Normalization (CN) to facilitate training similar to BN while mitigating its negative effect.
arXiv Detail & Related papers (2022-03-30T07:23:24Z) - Revisiting Batch Normalization [0.0]
Batch normalization (BN) is essential for training deep neural networks.
We revisit the BN formulation and present a new method and update approach for BN to address the aforementioned issues.
Experimental results using the proposed alterations to BN show statistically significant performance gains in a variety of scenarios.
We also present a new online BN-based input data normalization technique to alleviate the need for other offline or fixed methods.
arXiv Detail & Related papers (2021-10-26T19:48:19Z) - "BNN - BN = ?": Training Binary Neural Networks without Batch
Normalization [92.23297927690149]
Batch normalization (BN) is a key facilitator and considered essential for state-of-the-art binary neural networks (BNN)
We extend their framework to training BNNs, and for the first time demonstrate that BNs can be completed removed from BNN training and inference regimes.
arXiv Detail & Related papers (2021-04-16T16:46:57Z) - MimicNorm: Weight Mean and Last BN Layer Mimic the Dynamic of Batch
Normalization [60.36100335878855]
We propose a novel normalization method, named MimicNorm, to improve the convergence and efficiency in network training.
We leverage the neural kernel (NTK) theory to prove that our weight mean operation whitens activations and transits network into the chaotic regime like BN layer.
MimicNorm achieves similar accuracy for various network structures, including ResNets and lightweight networks like ShuffleNet, with a reduction of about 20% memory consumption.
arXiv Detail & Related papers (2020-10-19T07:42:41Z) - Double Forward Propagation for Memorized Batch Normalization [68.34268180871416]
Batch Normalization (BN) has been a standard component in designing deep neural networks (DNNs)
We propose a memorized batch normalization (MBN) which considers multiple recent batches to obtain more accurate and robust statistics.
Compared to related methods, the proposed MBN exhibits consistent behaviors in both training and inference.
arXiv Detail & Related papers (2020-10-10T08:48:41Z) - PowerNorm: Rethinking Batch Normalization in Transformers [96.14956636022957]
normalization method for neural network (NN) models used in Natural Language Processing (NLP) is layer normalization (LN)
LN is preferred due to the empirical observation that a (naive/vanilla) use of BN leads to significant performance degradation for NLP tasks.
We propose Power Normalization (PN), a novel normalization scheme that resolves this issue.
arXiv Detail & Related papers (2020-03-17T17:50:26Z) - Towards Stabilizing Batch Statistics in Backward Propagation of Batch
Normalization [126.6252371899064]
Moving Average Batch Normalization (MABN) is a novel normalization method.
We show that MABN can completely restore the performance of vanilla BN in small batch cases.
Our experiments demonstrate the effectiveness of MABN in multiple computer vision tasks including ImageNet and COCO.
arXiv Detail & Related papers (2020-01-19T14:41:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.