OVERT: An Algorithm for Safety Verification of Neural Network Control
Policies for Nonlinear Systems
- URL: http://arxiv.org/abs/2108.01220v1
- Date: Tue, 3 Aug 2021 00:41:27 GMT
- Title: OVERT: An Algorithm for Safety Verification of Neural Network Control
Policies for Nonlinear Systems
- Authors: Chelsea Sidrane, Amir Maleki, Ahmed Irfan, Mykel J. Kochenderfer
- Abstract summary: We present OVERT: a sound algorithm for safety verification of neural network control policies.
The central concept of OVERT is to abstract nonlinear functions with a set of optimally tight piecewise linear bounds.
Overt compares favorably to existing methods both in time and in tightness of the reachable set.
- Score: 31.3812947670948
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning methods can be used to produce control policies, but certifying
their safety is challenging. The resulting networks are nonlinear and often
very large. In response to this challenge, we present OVERT: a sound algorithm
for safety verification of nonlinear discrete-time closed loop dynamical
systems with neural network control policies. The novelty of OVERT lies in
combining ideas from the classical formal methods literature with ideas from
the newer neural network verification literature. The central concept of OVERT
is to abstract nonlinear functions with a set of optimally tight piecewise
linear bounds. Such piecewise linear bounds are designed for seamless
integration into ReLU neural network verification tools. OVERT can be used to
prove bounded-time safety properties by either computing reachable sets or
solving feasibility queries directly. We demonstrate various examples of safety
verification for several classical benchmark examples. OVERT compares favorably
to existing methods both in computation time and in tightness of the reachable
set.
Related papers
- Lyapunov-stable Neural Control for State and Output Feedback: A Novel Formulation [67.63756749551924]
Learning-based neural network (NN) control policies have shown impressive empirical performance in a wide range of tasks in robotics and control.
Lyapunov stability guarantees over the region-of-attraction (ROA) for NN controllers with nonlinear dynamical systems are challenging to obtain.
We demonstrate a new framework for learning NN controllers together with Lyapunov certificates using fast empirical falsification and strategic regularizations.
arXiv Detail & Related papers (2024-04-11T17:49:15Z) - Provably Safe Neural Network Controllers via Differential Dynamic Logic [2.416907802598482]
We present the first general approach that allows reusing control theory results for NNCS verification.
Based on provably safe control envelopes in dL, we derive specifications for the NN which is proven via NN verification.
We show that a proof of the NN adhering to the specification is mirrored by a dL proof on the infinite-time safety of the NNCS.
arXiv Detail & Related papers (2024-02-16T16:15:25Z) - Probabilistic Reach-Avoid for Bayesian Neural Networks [71.67052234622781]
We show that an optimal synthesis algorithm can provide more than a four-fold increase in the number of certifiable states.
The algorithm is able to provide more than a three-fold increase in the average guaranteed reach-avoid probability.
arXiv Detail & Related papers (2023-10-03T10:52:21Z) - Backward Reachability Analysis of Neural Feedback Loops: Techniques for
Linear and Nonlinear Systems [59.57462129637796]
This paper presents a backward reachability approach for safety verification of closed-loop systems with neural networks (NNs)
The presence of NNs in the feedback loop presents a unique set of problems due to the nonlinearities in their activation functions and because NN models are generally not invertible.
We present frameworks for calculating BP over-approximations for both linear and nonlinear systems with control policies represented by feedforward NNs.
arXiv Detail & Related papers (2022-09-28T13:17:28Z) - Neural Network Verification in Control [3.3123634393237706]
This tutorial first introduces and unifies recent techniques for verifying robustness properties of NNs.
The techniques are then extended to provide formal guarantees of neural feedback loops.
The provided tools are shown to enable closed-loop reachability analysis and robust deep reinforcement learning.
arXiv Detail & Related papers (2021-09-30T22:28:44Z) - Constrained Feedforward Neural Network Training via Reachability
Analysis [0.0]
It remains an open challenge to train a neural network to obey safety constraints.
This work proposes a constrained method to simultaneously train and verify a feedforward neural network with rectified linear unit (ReLU) nonlinearities.
arXiv Detail & Related papers (2021-07-16T04:03:01Z) - Certification of Iterative Predictions in Bayesian Neural Networks [79.15007746660211]
We compute lower bounds for the probability that trajectories of the BNN model reach a given set of states while avoiding a set of unsafe states.
We use the lower bounds in the context of control and reinforcement learning to provide safety certification for given control policies.
arXiv Detail & Related papers (2021-05-21T05:23:57Z) - Reinforcement Learning with External Knowledge by using Logical Neural
Networks [67.46162586940905]
A recent neuro-symbolic framework called the Logical Neural Networks (LNNs) can simultaneously provide key-properties of both neural networks and symbolic logic.
We propose an integrated method that enables model-free reinforcement learning from external knowledge sources.
arXiv Detail & Related papers (2021-03-03T12:34:59Z) - Reach-SDP: Reachability Analysis of Closed-Loop Systems with Neural
Network Controllers via Semidefinite Programming [19.51345816555571]
We propose a novel forward reachability analysis method for the safety verification of linear time-varying systems with neural networks in feedback.
We show that we can compute these approximate reachable sets using semidefinite programming.
We illustrate our method in a quadrotor example, in which we first approximate a nonlinear model predictive controller via a deep neural network and then apply our analysis tool to certify finite-time reachability and constraint satisfaction of the closed-loop system.
arXiv Detail & Related papers (2020-04-16T18:48:25Z) - Certified Reinforcement Learning with Logic Guidance [78.2286146954051]
We propose a model-free RL algorithm that enables the use of Linear Temporal Logic (LTL) to formulate a goal for unknown continuous-state/action Markov Decision Processes (MDPs)
The algorithm is guaranteed to synthesise a control policy whose traces satisfy the specification with maximal probability.
arXiv Detail & Related papers (2019-02-02T20:09:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.