A Study on Herd Behavior Using Sentiment Analysis in Online Social
Network
- URL: http://arxiv.org/abs/2108.01728v1
- Date: Sun, 25 Jul 2021 05:22:35 GMT
- Title: A Study on Herd Behavior Using Sentiment Analysis in Online Social
Network
- Authors: Suchandra Dutta, Dhrubasish Sarkar, Sohom Roy, Dipak K. Kole,
Premananda Jana
- Abstract summary: This paper represents and analyze the capacity of diverse strategies to predict critical opinions from online social networking sites.
Social media becomes a good outlet since the last decades to share the opinions globally.
This study demonstrates the evaluation of sentiment analysis techniques using social media contents.
- Score: 1.5673338088641469
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Social media platforms are thriving nowadays, so a huge volume of data is
produced. As it includes brief and clear statements, millions of people post
their thoughts on microblogging sites every day. This paper represents and
analyze the capacity of diverse strategies to volumetric, delicate, and social
networks to predict critical opinions from online social networking sites. In
the exploration of certain searching for relevant, the thoughts of people play
a crucial role. Social media becomes a good outlet since the last decades to
share the opinions globally. Sentiment analysis as well as opinion mining is a
tool that is used to extract the opinions or thoughts of the common public. An
occurrence in one place, be it economic, political, or social, may trigger
large-scale chain public reaction across many other sites in an increasingly
interconnected world. This study demonstrates the evaluation of sentiment
analysis techniques using social media contents and creating the association
between subjectivity with herd behavior and clustering coefficient as well as
tries to predict the election result (2021 election in West Bengal). This is an
implementation of sentiment analysis targeted at estimating the results of an
upcoming election by assessing the public's opinion across social media. This
paper also has a short discussion section on the usefulness of the idea in
other fields.
Related papers
- Community Shaping in the Digital Age: A Temporal Fusion Framework for Analyzing Discourse Fragmentation in Online Social Networks [45.58331196717468]
This research presents a framework for analyzing the dynamics of online communities in social media platforms.
By combining text classification and dynamic social network analysis, we uncover mechanisms driving community formation and evolution.
arXiv Detail & Related papers (2024-09-18T03:03:02Z) - Decoding the Silent Majority: Inducing Belief Augmented Social Graph
with Large Language Model for Response Forecasting [74.68371461260946]
SocialSense is a framework that induces a belief-centered graph on top of an existent social network, along with graph-based propagation to capture social dynamics.
Our method surpasses existing state-of-the-art in experimental evaluations for both zero-shot and supervised settings.
arXiv Detail & Related papers (2023-10-20T06:17:02Z) - Exploring Embeddings for Measuring Text Relatedness: Unveiling
Sentiments and Relationships in Online Comments [1.7230140898679147]
This paper investigates sentiment and semantic relationships among comments across various social media platforms.
It uses word embeddings to analyze components in sentences and documents.
Our analysis will enable a deeper understanding of the interconnectedness of online comments and will investigate the notion of the internet functioning as a large interconnected brain.
arXiv Detail & Related papers (2023-09-15T04:57:23Z) - Executive Voiced Laughter and Social Approval: An Explorative Machine
Learning Study [56.03830131919201]
We study voiced laughter in executive communication and its effect on social approval.
Our findings contribute to research at the nexus of executive communication, strategic leadership, and social evaluations.
arXiv Detail & Related papers (2023-05-16T14:39:00Z) - Detecting Ideal Instagram Influencer Using Social Network Analysis [0.0]
The paper focuses on social network analysis (SNA) for a real-world online marketing strategy.
The study contributes by comparing various centrality measures to identify the most central nodes in the network and uses a linear threshold model to understand the spreading behaviour of individual users.
arXiv Detail & Related papers (2021-07-12T20:53:58Z) - News consumption and social media regulations policy [70.31753171707005]
We analyze two social media that enforced opposite moderation methods, Twitter and Gab, to assess the interplay between news consumption and content regulation.
Our results show that the presence of moderation pursued by Twitter produces a significant reduction of questionable content.
The lack of clear regulation on Gab results in the tendency of the user to engage with both types of content, showing a slight preference for the questionable ones which may account for a dissing/endorsement behavior.
arXiv Detail & Related papers (2021-06-07T19:26:32Z) - Over a Decade of Social Opinion Mining [1.0152838128195467]
This systematic review focuses on the evolving research area of Social Opinion Mining.
Natural language can be understood in terms of the different opinion dimensions, as expressed by humans.
Future research directions are presented, whereas further research and development has the potential of leaving a wider academic and societal impact.
arXiv Detail & Related papers (2020-12-05T17:59:59Z) - Country Image in COVID-19 Pandemic: A Case Study of China [79.17323278601869]
Country image has a profound influence on international relations and economic development.
In the worldwide outbreak of COVID-19, countries and their people display different reactions.
In this study, we take China as a specific and typical case and investigate its image with aspect-based sentiment analysis on a large-scale Twitter dataset.
arXiv Detail & Related papers (2020-09-12T15:54:51Z) - Visual Sentiment Analysis from Disaster Images in Social Media [11.075683976162766]
This article focuses on visual sentiment analysis in a societal important domain, namely disaster analysis in social media.
We propose a deep visual sentiment analyzer for disaster related images, covering different aspects of visual sentiment analysis.
We believe the proposed system can contribute toward more livable communities by helping different stakeholders.
arXiv Detail & Related papers (2020-09-04T11:29:52Z) - Tweets Sentiment Analysis via Word Embeddings and Machine Learning
Techniques [1.345251051985899]
This paper aims to perform sentiment analysis of real-time 2019 election twitter data using the feature selection model word2vec and the machine learning algorithm random forest for sentiment classification.
Word2vec improves the quality of features by considering contextual semantics of words in a text hence improving the accuracy of machine learning and sentiment analysis.
arXiv Detail & Related papers (2020-07-05T08:10:30Z) - Echo Chambers on Social Media: A comparative analysis [64.2256216637683]
We introduce an operational definition of echo chambers and perform a massive comparative analysis on 1B pieces of contents produced by 1M users on four social media platforms.
We infer the leaning of users about controversial topics and reconstruct their interaction networks by analyzing different features.
We find support for the hypothesis that platforms implementing news feed algorithms like Facebook may elicit the emergence of echo-chambers.
arXiv Detail & Related papers (2020-04-20T20:00:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.