Emergent Discrete Communication in Semantic Spaces
- URL: http://arxiv.org/abs/2108.01828v2
- Date: Thu, 5 Aug 2021 14:57:47 GMT
- Title: Emergent Discrete Communication in Semantic Spaces
- Authors: Mycal Tucker, Huao Li, Siddharth Agrawal, Dana Hughes, Katia Sycara,
Michael Lewis, Julie Shah
- Abstract summary: We propose a neural agent architecture that enables agents to communicate via discrete tokens derived from a learned, continuous space.
We show in a decision theoretic framework that our technique optimize communication over a wide range of scenarios, whereas one-hot tokens are only optimal under restrictive assumptions.
In self-play experiments, we validate that our trained agents learn to cluster tokens in semantically-meaningful ways, allowing them communicate in noisy environments.
- Score: 3.2280079436668996
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural agents trained in reinforcement learning settings can learn to
communicate among themselves via discrete tokens, accomplishing as a team what
agents would be unable to do alone. However, the current standard of using
one-hot vectors as discrete communication tokens prevents agents from acquiring
more desirable aspects of communication such as zero-shot understanding.
Inspired by word embedding techniques from natural language processing, we
propose neural agent architectures that enables them to communicate via
discrete tokens derived from a learned, continuous space. We show in a decision
theoretic framework that our technique optimizes communication over a wide
range of scenarios, whereas one-hot tokens are only optimal under restrictive
assumptions. In self-play experiments, we validate that our trained agents
learn to cluster tokens in semantically-meaningful ways, allowing them
communicate in noisy environments where other techniques fail. Lastly, we
demonstrate both that agents using our method can effectively respond to novel
human communication and that humans can understand unlabeled emergent agent
communication, outperforming the use of one-hot communication.
Related papers
- Discrete Messages Improve Communication Efficiency among Isolated Intelligent Agents [11.999081506772686]
This study aims to explore the efficiency of language as a communication medium.
In scenarios where agents are exposed to different data, communicating through sentences composed of discrete tokens offers the best inter-agent communication efficiency.
arXiv Detail & Related papers (2023-12-26T10:30:05Z) - Learning Multi-Agent Communication with Contrastive Learning [3.816854668079928]
We introduce an alternative perspective where communicative messages are considered as different incomplete views of the environment state.
By examining the relationship between messages sent and received, we propose to learn to communicate using contrastive learning.
In communication-essential environments, our method outperforms previous work in both performance and learning speed.
arXiv Detail & Related papers (2023-07-03T23:51:05Z) - Cognitive Semantic Communication Systems Driven by Knowledge Graph:
Principle, Implementation, and Performance Evaluation [74.38561925376996]
Two cognitive semantic communication frameworks are proposed for the single-user and multiple-user communication scenarios.
An effective semantic correction algorithm is proposed by mining the inference rule from the knowledge graph.
For the multi-user cognitive semantic communication system, a message recovery algorithm is proposed to distinguish messages of different users.
arXiv Detail & Related papers (2023-03-15T12:01:43Z) - On the Role of Emergent Communication for Social Learning in Multi-Agent
Reinforcement Learning [0.0]
Social learning uses cues from experts to align heterogeneous policies, reduce sample complexity, and solve partially observable tasks.
This paper proposes an unsupervised method based on the information bottleneck to capture both referential complexity and task-specific utility.
arXiv Detail & Related papers (2023-02-28T03:23:27Z) - Emergent Quantized Communication [34.31732248872158]
We propose an alternative approach to achieve discrete communication -- quantization of communicated messages.
Message quantization allows us to train the model end-to-end, achieving superior performance in multiple setups.
arXiv Detail & Related papers (2022-11-04T12:39:45Z) - Over-communicate no more: Situated RL agents learn concise communication
protocols [78.28898217947467]
It is unclear how to design artificial agents that can learn to effectively and efficiently communicate with each other.
Much research on communication emergence uses reinforcement learning (RL)
We explore situated communication in a multi-step task, where the acting agent has to forgo an environmental action to communicate.
We find that while all tested pressures can disincentivise over-communication, situated communication does it most effectively and, unlike the cost on effort, does not negatively impact emergence.
arXiv Detail & Related papers (2022-11-02T21:08:14Z) - Color Overmodification Emerges from Data-Driven Learning and Pragmatic
Reasoning [53.088796874029974]
We show that speakers' referential expressions depart from communicative ideals in ways that help illuminate the nature of pragmatic language use.
By adopting neural networks as learning agents, we show that overmodification is more likely with environmental features that are infrequent or salient.
arXiv Detail & Related papers (2022-05-18T18:42:43Z) - Few-shot Language Coordination by Modeling Theory of Mind [95.54446989205117]
We study the task of few-shot $textitlanguage coordination$.
We require the lead agent to coordinate with a $textitpopulation$ of agents with different linguistic abilities.
This requires the ability to model the partner's beliefs, a vital component of human communication.
arXiv Detail & Related papers (2021-07-12T19:26:11Z) - Learning Emergent Discrete Message Communication for Cooperative
Reinforcement Learning [36.468498804251574]
We show that discrete message communication has performance comparable to continuous message communication.
We propose an approach that allows humans to interactively send discrete messages to agents.
arXiv Detail & Related papers (2021-02-24T20:44:14Z) - Learning to cooperate: Emergent communication in multi-agent navigation [49.11609702016523]
We show that agents performing a cooperative navigation task learn an interpretable communication protocol.
An analysis of the agents' policies reveals that emergent signals spatially cluster the state space.
Using populations of agents, we show that the emergent protocol has basic compositional structure.
arXiv Detail & Related papers (2020-04-02T16:03:17Z) - Emergence of Pragmatics from Referential Game between Theory of Mind
Agents [64.25696237463397]
We propose an algorithm, using which agents can spontaneously learn the ability to "read between lines" without any explicit hand-designed rules.
We integrate the theory of mind (ToM) in a cooperative multi-agent pedagogical situation and propose an adaptive reinforcement learning (RL) algorithm to develop a communication protocol.
arXiv Detail & Related papers (2020-01-21T19:37:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.