A Hypothesis for the Aesthetic Appreciation in Neural Networks
- URL: http://arxiv.org/abs/2108.02646v1
- Date: Sat, 31 Jul 2021 06:19:00 GMT
- Title: A Hypothesis for the Aesthetic Appreciation in Neural Networks
- Authors: Xu Cheng, Xin Wang, Haotian Xue, Zhengyang Liang, Quanshi Zhang
- Abstract summary: This paper proposes a hypothesis for the aesthetic appreciation that aesthetic images make a neural network strengthen salient concepts and discard inessential concepts.
In experiments, we find that the revised images are more aesthetic than the original ones to some extent.
- Score: 17.58003267114874
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a hypothesis for the aesthetic appreciation that
aesthetic images make a neural network strengthen salient concepts and discard
inessential concepts. In order to verify this hypothesis, we use multi-variate
interactions to represent salient concepts and inessential concepts contained
in images. Furthermore, we design a set of operations to revise images towards
more beautiful ones. In experiments, we find that the revised images are more
aesthetic than the original ones to some extent.
Related papers
- Explainable Concept Generation through Vision-Language Preference Learning [7.736445799116692]
Concept-based explanations have become a popular choice for explaining deep neural networks post-hoc.
We devise a reinforcement learning-based preference optimization algorithm that fine-tunes the vision-language generative model.
In addition to showing the efficacy and reliability of our method, we show how our method can be used as a diagnostic tool for analyzing neural networks.
arXiv Detail & Related papers (2024-08-24T02:26:42Z) - Visual Concept-driven Image Generation with Text-to-Image Diffusion Model [65.96212844602866]
Text-to-image (TTI) models have demonstrated impressive results in generating high-resolution images of complex scenes.
Recent approaches have extended these methods with personalization techniques that allow them to integrate user-illustrated concepts.
However, the ability to generate images with multiple interacting concepts, such as human subjects, as well as concepts that may be entangled in one, or across multiple, image illustrations remains illusive.
We propose a concept-driven TTI personalization framework that addresses these core challenges.
arXiv Detail & Related papers (2024-02-18T07:28:37Z) - Impressions: Understanding Visual Semiotics and Aesthetic Impact [66.40617566253404]
We present Impressions, a novel dataset through which to investigate the semiotics of images.
We show that existing multimodal image captioning and conditional generation models struggle to simulate plausible human responses to images.
This dataset significantly improves their ability to model impressions and aesthetic evaluations of images through fine-tuning and few-shot adaptation.
arXiv Detail & Related papers (2023-10-27T04:30:18Z) - Concept Bottleneck with Visual Concept Filtering for Explainable Medical
Image Classification [16.849592713393896]
Concept Bottleneck Models (CBMs) enable interpretable image classification by utilizing human-understandable concepts as intermediate targets.
We propose a visual activation score that measures whether the concept contains visual cues or not.
Computed visual activation scores are then used to filter out the less visible concepts, thus resulting in a final concept set with visually meaningful concepts.
arXiv Detail & Related papers (2023-08-23T05:04:01Z) - A domain adaptive deep learning solution for scanpath prediction of
paintings [66.46953851227454]
This paper focuses on the eye-movement analysis of viewers during the visual experience of a certain number of paintings.
We introduce a new approach to predicting human visual attention, which impacts several cognitive functions for humans.
The proposed new architecture ingests images and returns scanpaths, a sequence of points featuring a high likelihood of catching viewers' attention.
arXiv Detail & Related papers (2022-09-22T22:27:08Z) - Modeling, Quantifying, and Predicting Subjectivity of Image Aesthetics [21.46956783120668]
We propose a novel unified probabilistic framework that can model and quantify subjective aesthetic preference based on the subjective logic.
In this framework, the rating distribution is modeled as a beta distribution, from which the probabilities of being definitely pleasing, being definitely unpleasing, and being uncertain can be obtained.
We present a method to learn deep neural networks for prediction of image aesthetics, which is shown to be effective in improving the performance of subjectivity prediction via experiments.
arXiv Detail & Related papers (2022-08-20T12:16:45Z) - FALCON: Fast Visual Concept Learning by Integrating Images, Linguistic
descriptions, and Conceptual Relations [99.54048050189971]
We present a framework for learning new visual concepts quickly, guided by multiple naturally occurring data streams.
The learned concepts support downstream applications, such as answering questions by reasoning about unseen images.
We demonstrate the effectiveness of our model on both synthetic and real-world datasets.
arXiv Detail & Related papers (2022-03-30T19:45:00Z) - Human-Centered Concept Explanations for Neural Networks [47.71169918421306]
We introduce concept explanations including the class of Concept Activation Vectors (CAV)
We then discuss approaches to automatically extract concepts, and approaches to address some of their caveats.
Finally, we discuss some case studies that showcase the utility of such concept-based explanations in synthetic settings and real world applications.
arXiv Detail & Related papers (2022-02-25T01:27:31Z) - Composition and Style Attributes Guided Image Aesthetic Assessment [66.60253358722538]
We propose a method for the automatic prediction of the aesthetics of an image.
The proposed network includes: a pre-trained network for semantic features extraction (the Backbone); a Multi Layer Perceptron (MLP) network that relies on the Backbone features for the prediction of image attributes (the AttributeNet)
Given an image, the proposed multi-network is able to predict: style and composition attributes, and aesthetic score distribution.
arXiv Detail & Related papers (2021-11-08T17:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.