Object Wake-up: 3-D Object Reconstruction, Animation, and in-situ
Rendering from a Single Image
- URL: http://arxiv.org/abs/2108.02708v1
- Date: Thu, 5 Aug 2021 16:20:12 GMT
- Title: Object Wake-up: 3-D Object Reconstruction, Animation, and in-situ
Rendering from a Single Image
- Authors: Xinxin Zuo and Ji Yang and Sen Wang and Zhenbo Yu and Xinyu Li and
Bingbing Ni and Minglun Gong and Li Cheng
- Abstract summary: Given a picture of a chair, could we extract the 3-D shape of the chair, animate its plausible articulations and motions, and render in-situ in its original image space?
We devise an automated approach to extract and manipulate articulated objects in single images.
- Score: 58.69732754597448
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given a picture of a chair, could we extract the 3-D shape of the chair,
animate its plausible articulations and motions, and render in-situ in its
original image space? The above question prompts us to devise an automated
approach to extract and manipulate articulated objects in single images.
Comparing with previous efforts on object manipulation, our work goes beyond
2-D manipulation and focuses on articulable objects, thus introduces greater
flexibility for possible object deformations. The pipeline of our approach
starts by reconstructing and refining a 3-D mesh representation of the object
of interest from an input image; its control joints are predicted by exploiting
the semantic part segmentation information; the obtained object 3-D mesh is
then rigged \& animated by non-rigid deformation, and rendered to perform
in-situ motions in its original image space. Quantitative evaluations are
carried out on 3-D reconstruction from single images, an established task that
is related to our pipeline, where our results surpass those of the SOTAs by a
noticeable margin. Extensive visual results also demonstrate the applicability
of our approach.
Related papers
- SUGAR: Pre-training 3D Visual Representations for Robotics [85.55534363501131]
We introduce a novel 3D pre-training framework for robotics named SUGAR.
SUGAR captures semantic, geometric and affordance properties of objects through 3D point clouds.
We show that SUGAR's 3D representation outperforms state-of-the-art 2D and 3D representations.
arXiv Detail & Related papers (2024-04-01T21:23:03Z) - Single-view 3D Scene Reconstruction with High-fidelity Shape and Texture [47.44029968307207]
We propose a novel framework for simultaneous high-fidelity recovery of object shapes and textures from single-view images.
Our approach utilizes the proposed Single-view neural implicit Shape and Radiance field (SSR) representations to leverage both explicit 3D shape supervision and volume rendering.
A distinctive feature of our framework is its ability to generate fine-grained textured meshes while seamlessly integrating rendering capabilities into the single-view 3D reconstruction model.
arXiv Detail & Related papers (2023-11-01T11:46:15Z) - Towards High-Fidelity Single-view Holistic Reconstruction of Indoor
Scenes [50.317223783035075]
We present a new framework to reconstruct holistic 3D indoor scenes from single-view images.
We propose an instance-aligned implicit function (InstPIFu) for detailed object reconstruction.
Our code and model will be made publicly available.
arXiv Detail & Related papers (2022-07-18T14:54:57Z) - What's in your hands? 3D Reconstruction of Generic Objects in Hands [49.12461675219253]
Our work aims to reconstruct hand-held objects given a single RGB image.
In contrast to prior works that typically assume known 3D templates and reduce the problem to 3D pose estimation, our work reconstructs generic hand-held object without knowing their 3D templates.
arXiv Detail & Related papers (2022-04-14T17:59:02Z) - Style Agnostic 3D Reconstruction via Adversarial Style Transfer [23.304453155586312]
Reconstructing the 3D geometry of an object from an image is a major challenge in computer vision.
We propose an approach that enables a differentiable-based learning of 3D objects from images with backgrounds.
arXiv Detail & Related papers (2021-10-20T21:24:44Z) - Learning Canonical 3D Object Representation for Fine-Grained Recognition [77.33501114409036]
We propose a novel framework for fine-grained object recognition that learns to recover object variation in 3D space from a single image.
We represent an object as a composition of 3D shape and its appearance, while eliminating the effect of camera viewpoint.
By incorporating 3D shape and appearance jointly in a deep representation, our method learns the discriminative representation of the object.
arXiv Detail & Related papers (2021-08-10T12:19:34Z) - Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving
Objects [115.71874459429381]
We address the novel task of jointly reconstructing the 3D shape, texture, and motion of an object from a single motion-blurred image.
While previous approaches address the deblurring problem only in the 2D image domain, our proposed rigorous modeling of all object properties in the 3D domain enables the correct description of arbitrary object motion.
arXiv Detail & Related papers (2021-06-16T13:18:08Z) - CoReNet: Coherent 3D scene reconstruction from a single RGB image [43.74240268086773]
We build on advances in deep learning to reconstruct the shape of a single object given only one RBG image as input.
We propose three extensions: (1) ray-traced skip connections that propagate local 2D information to the output 3D volume in a physically correct manner; (2) a hybrid 3D volume representation that enables building translation equivariant models; and (3) a reconstruction loss tailored to capture overall object geometry.
We reconstruct all objects jointly in one pass, producing a coherent reconstruction, where all objects live in a single consistent 3D coordinate frame relative to the camera and they do not intersect in 3D space.
arXiv Detail & Related papers (2020-04-27T17:53:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.