MAF-GNN: Multi-adaptive Spatiotemporal-flow Graph Neural Network for
Traffic Speed Forecasting
- URL: http://arxiv.org/abs/2108.03594v1
- Date: Sun, 8 Aug 2021 09:06:43 GMT
- Title: MAF-GNN: Multi-adaptive Spatiotemporal-flow Graph Neural Network for
Traffic Speed Forecasting
- Authors: Yaobin Xu, Weitang Liu, Zhongyi Jiang, Zixuan Xu, Tingyun Mao, Lili
Chen, Mingwei Zhou
- Abstract summary: We propose a Multi-adaptive Spatiotemporal-flow Graph Neural Network (MAF-GNN) for traffic speed forecasting.
MAF-GNN introduces an effective Multi-adaptive Adjacency Matrices Mechanism to capture multiple latent spatial dependencies between traffic nodes.
It achieves better performance than other models on two real-world datasets of public traffic network, METR-LA and PeMS-Bay.
- Score: 3.614768552081925
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traffic forecasting is a core element of intelligent traffic monitoring
system. Approaches based on graph neural networks have been widely used in this
task to effectively capture spatial and temporal dependencies of road networks.
However, these approaches can not effectively define the complicated network
topology. Besides, their cascade network structures have limitations in
transmitting distinct features in the time and space dimensions. In this paper,
we propose a Multi-adaptive Spatiotemporal-flow Graph Neural Network (MAF-GNN)
for traffic speed forecasting. MAF-GNN introduces an effective Multi-adaptive
Adjacency Matrices Mechanism to capture multiple latent spatial dependencies
between traffic nodes. Additionally, we propose Spatiotemporal-flow Modules
aiming to further enhance feature propagation in both time and space
dimensions. MAF-GNN achieves better performance than other models on two
real-world datasets of public traffic network, METR-LA and PeMS-Bay,
demonstrating the effectiveness of the proposed approach.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Enhanced Traffic Flow Prediction with Multi-Segment Fusion Tensor Graph Convolutional Networks [9.44949364543965]
Existing traffic flow prediction models suffer from limitations in capturing the complex spatial-temporal dependencies within traffic networks.
This study proposes a multi-segment fusion tensor graph convolutional network (MS-FTGCN) for traffic flow prediction.
The results of experiments conducted on two traffic flow datasets demonstrate that the proposed MS-FTGCN outperforms the state-of-the-art models.
arXiv Detail & Related papers (2024-08-08T05:37:17Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
We propose an Adaptive Hierarchical SpatioTemporal Network (AHSTN) to promote traffic forecasting.
AHSTN exploits the spatial hierarchy and modeling multi-scale spatial correlations.
Experiments on two real-world datasets show that AHSTN achieves better performance over several strong baselines.
arXiv Detail & Related papers (2023-06-15T14:50:27Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Adaptive Multi-receptive Field Spatial-Temporal Graph Convolutional
Network for Traffic Forecasting [0.0]
We propose a novel deep learning network architecture to model the traffic dynamics of mobile base stations.
Experiments on four real-world datasets consistently show AMF-STGCN outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2021-11-01T06:47:42Z) - Learning dynamic and hierarchical traffic spatiotemporal features with
Transformer [4.506591024152763]
This paper proposes a novel model, Traffic Transformer, for spatial-temporal graph modeling and long-term traffic forecasting.
Transformer is the most popular framework in Natural Language Processing (NLP)
analyzing the attention weight matrixes can find the influential part of road networks, allowing us to learn the traffic networks better.
arXiv Detail & Related papers (2021-04-12T02:29:58Z) - SST-GNN: Simplified Spatio-temporal Traffic forecasting model using
Graph Neural Network [2.524966118517392]
We have designed a simplified S-temporal GNN(SST-GNN) that effectively encodes the dependency by separately aggregating different neighborhood.
We have shown that our model has significantly outperformed the state-of-the-art models on three real-world traffic datasets.
arXiv Detail & Related papers (2021-03-31T18:28:44Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
A graph-based framework called SMART is proposed to model and keep track of the statistics of vehicle-to-temporal (V2I) communication latency across a large geographical area.
We develop a graph reconstruction-based approach using a graph convolutional network integrated with a deep Q-networks algorithm.
Our results show that the proposed method can significantly improve both the accuracy and efficiency for modeling and the latency performance of large vehicular networks.
arXiv Detail & Related papers (2021-03-13T06:56:29Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.