Segmentation-free Heart Pathology Detection Using Deep Learning
- URL: http://arxiv.org/abs/2108.04139v1
- Date: Mon, 9 Aug 2021 16:09:30 GMT
- Title: Segmentation-free Heart Pathology Detection Using Deep Learning
- Authors: Erika Bondareva, Jing Han, William Bradlow, Cecilia Mascolo
- Abstract summary: We propose a novel segmentation-free heart sound classification method.
Specifically, we apply discrete wavelet transform to denoise the signal, followed by feature extraction and feature reduction.
Support Vector Machines and Deep Neural Networks are utilised for classification.
- Score: 12.065014651638943
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cardiovascular (CV) diseases are the leading cause of death in the world, and
auscultation is typically an essential part of a cardiovascular examination.
The ability to diagnose a patient based on their heart sounds is a rather
difficult skill to master. Thus, many approaches for automated heart
auscultation have been explored. However, most of the previously proposed
methods involve a segmentation step, the performance of which drops
significantly for high pulse rates or noisy signals. In this work, we propose a
novel segmentation-free heart sound classification method. Specifically, we
apply discrete wavelet transform to denoise the signal, followed by feature
extraction and feature reduction. Then, Support Vector Machines and Deep Neural
Networks are utilised for classification. On the PASCAL heart sound dataset our
approach showed superior performance compared to others, achieving 81% and 96%
precision on normal and murmur classes, respectively. In addition, for the
first time, the data were further explored under a user-independent setting,
where the proposed method achieved 92% and 86% precision on normal and murmur,
demonstrating the potential of enabling automatic murmur detection for
practical use.
Related papers
- Benchmarking the Impact of Noise on Deep Learning-based Classification
of Atrial Fibrillation in 12-Lead ECG [1.174402845822043]
We benchmark the influence of four types of noise on the accuracy of a Deep Learning-based method for atrial fibrillation detection in 12-lead electrocardiograms.
We observe that the method can robustly identify atrial fibrillation, even in cases signals are labelled by human experts as being noisy on multiple leads.
arXiv Detail & Related papers (2023-03-24T11:04:16Z) - An Algorithm for the Labeling and Interactive Visualization of the
Cerebrovascular System of Ischemic Strokes [59.116811751334225]
VirtualDSA++ is an algorithm designed to segment and label the cerebrovascular tree on CTA scans.
We extend the labeling mechanism for the cerebral arteries to identify occluded vessels.
We present the generic concept of iterative systematic search for pathways on all nodes of said model, which enables new interactive features.
arXiv Detail & Related papers (2022-04-26T14:20:26Z) - Global ECG Classification by Self-Operational Neural Networks with
Feature Injection [25.15075119957447]
We propose a novel approach for inter-patient ECG classification using a compact 1D Self-Organized Operational Neural Networks (Self-ONNs)
We used 1D Self-ONN layers to automatically learn morphological representations from ECG data, enabling us to capture the shape of the ECG waveform around the R peaks.
Using the MIT-BIH arrhythmia benchmark database, the proposed method achieves the highest classification performance ever achieved.
arXiv Detail & Related papers (2022-04-07T22:49:18Z) - Supraventricular Tachycardia Detection and Classification Model of ECG
signal Using Machine Learning [0.0]
Investigation on the electrocardiogram (ECG) signals is an essential way to diagnose heart disease.
This work presents a supraventricular arrhythmia prediction model consisting of a few stages, including filtering of noise.
We have developed a classification model based on machine learning that can successfully categorize different types of supraventricular tachycardia.
arXiv Detail & Related papers (2021-12-24T05:48:26Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
Collateral circulation results from specialized anastomotic channels which provide oxygenated blood to regions with compromised blood flow.
The actual grading is mostly done through manual inspection of the acquired images.
We present a deep learning approach to predicting collateral flow grading in stroke patients based on radiomic features extracted from MR perfusion data.
arXiv Detail & Related papers (2021-10-24T18:58:40Z) - Heart Sound Classification Considering Additive Noise and Convolutional
Distortion [2.63046959939306]
Automatic analysis of heart sounds for abnormality detection is faced with the challenges of additive noise and sensor-dependent degradation.
This paper aims to develop methods to address the cardiac abnormality detection problem when both types of distortions are present in the cardiac auscultation sound.
The proposed method paves the way towards developing computer-aided cardiac auscultation systems in noisy environments using low-cost stethoscopes.
arXiv Detail & Related papers (2021-06-03T14:09:04Z) - Noise-Resilient Automatic Interpretation of Holter ECG Recordings [67.59562181136491]
We present a three-stage process for analysing Holter recordings with robustness to noisy signal.
First stage is a segmentation neural network (NN) with gradientdecoder architecture which detects positions of heartbeats.
Second stage is a classification NN which will classify heartbeats as wide or narrow.
Third stage is a boosting decision trees (GBDT) on top of NN features that incorporates patient-wise features.
arXiv Detail & Related papers (2020-11-17T16:15:49Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - A Robust Interpretable Deep Learning Classifier for Heart Anomaly
Detection Without Segmentation [37.70077538403524]
We argue the importance of heart sound segmentation as a prior step for heart sound classification.
We then propose a robust classifier for abnormal heart sound detection.
Our new classifier is also shown to be robust, stable and most importantly, explainable, with an accuracy of almost 100% on the widely used PhysioNet dataset.
arXiv Detail & Related papers (2020-05-21T06:36:28Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.