Complexity of Inexact Proximal Point Algorithm for minimizing convex functions with Holderian Growth
- URL: http://arxiv.org/abs/2108.04482v6
- Date: Tue, 28 May 2024 14:09:53 GMT
- Title: Complexity of Inexact Proximal Point Algorithm for minimizing convex functions with Holderian Growth
- Authors: Andrei Pătraşcu, Paul Irofti,
- Abstract summary: We derive nonasymptotic complexity of exact and inexact PPA to minimize convex functions under $gamma-$Holderian growth.
Our numerical tests show improvements over existing restarting versions of the Subgradient Method.
- Score: 1.9643748953805935
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Several decades ago the Proximal Point Algorithm (PPA) started to gain a long-lasting attraction for both abstract operator theory and numerical optimization communities. Even in modern applications, researchers still use proximal minimization theory to design scalable algorithms that overcome nonsmoothness. Remarkable works as \cite{Fer:91,Ber:82constrained,Ber:89parallel,Tom:11} established tight relations between the convergence behaviour of PPA and the regularity of the objective function. In this manuscript we derive nonasymptotic iteration complexity of exact and inexact PPA to minimize convex functions under $\gamma-$Holderian growth: $\BigO{\log(1/\epsilon)}$ (for $\gamma \in [1,2]$) and $\BigO{1/\epsilon^{\gamma - 2}}$ (for $\gamma > 2$). In particular, we recover well-known results on PPA: finite convergence for sharp minima and linear convergence for quadratic growth, even under presence of deterministic noise. Moreover, when a simple Proximal Subgradient Method is recurrently called as an inner routine for computing each IPPA iterate, novel computational complexity bounds are obtained for Restarting Inexact PPA. Our numerical tests show improvements over existing restarting versions of the Subgradient Method.
Related papers
- Obtaining Lower Query Complexities through Lightweight Zeroth-Order Proximal Gradient Algorithms [65.42376001308064]
We propose two variance reduced ZO estimators for complex gradient problems.
We improve the state-of-the-art function complexities from $mathcalOleft(minfracdn1/2epsilon2, fracdepsilon3right)$ to $tildecalOleft(fracdepsilon2right)$.
arXiv Detail & Related papers (2024-10-03T15:04:01Z) - Projection by Convolution: Optimal Sample Complexity for Reinforcement Learning in Continuous-Space MDPs [56.237917407785545]
We consider the problem of learning an $varepsilon$-optimal policy in a general class of continuous-space Markov decision processes (MDPs) having smooth Bellman operators.
Key to our solution is a novel projection technique based on ideas from harmonic analysis.
Our result bridges the gap between two popular but conflicting perspectives on continuous-space MDPs.
arXiv Detail & Related papers (2024-05-10T09:58:47Z) - Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic
Shortest Path [80.60592344361073]
We study the Shortest Path (SSP) problem with a linear mixture transition kernel.
An agent repeatedly interacts with a environment and seeks to reach certain goal state while minimizing the cumulative cost.
Existing works often assume a strictly positive lower bound of the iteration cost function or an upper bound of the expected length for the optimal policy.
arXiv Detail & Related papers (2024-02-14T07:52:00Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - Revisiting Subgradient Method: Complexity and Convergence Beyond Lipschitz Continuity [24.45688490844496]
Subgradient method is one of the most fundamental algorithmic schemes for nonsmooth optimization.
In this work, we first extend the typical iteration complexity results for the subgradient method to cover non-Lipschitz convex and weakly convex minimization.
arXiv Detail & Related papers (2023-05-23T15:26:36Z) - A relaxed proximal gradient descent algorithm for convergent
plug-and-play with proximal denoiser [6.2484576862659065]
This paper presents a new convergent Plug-and-fidelity Descent (Play) algorithm.
The algorithm converges for a wider range of regular convexization parameters, thus allowing more accurate restoration of an image.
arXiv Detail & Related papers (2023-01-31T16:11:47Z) - On efficient algorithms for computing near-best polynomial
approximations to high-dimensional, Hilbert-valued functions from limited
samples [1.0650780147044159]
Sparse approximation has become indispensable for approxing smooth, high-dimensional functions from limited samples.
This paper introduces algorithms and theoretical guarantees that assert exponential or algebraic rates of convergence, along with robustness to sampling, algorithmic and physical discretization errors.
arXiv Detail & Related papers (2022-03-25T20:56:07Z) - Escaping Saddle-Points Faster under Interpolation-like Conditions [19.9471360853892]
We show that under over-parametrization several standard optimization algorithms escape saddle-points and converge to local-minimizers much faster.
We discuss the first-order oracle complexity of Perturbed Gradient Descent (PSGD) algorithm to reach an $epsilon$ localminimizer.
We next analyze Cubic-Regularized Newton (SCRN) algorithm under-like conditions, and show that the oracle complexity to reach an $epsilon$ local-minimizer under-like conditions, is $tildemathcalO (1/epsilon2.5
arXiv Detail & Related papers (2020-09-28T02:15:18Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
We propose two single-timescale single-loop algorithms that require only one data point each step.
Our results are expressed in a form of simultaneous primal and dual side convergence.
arXiv Detail & Related papers (2020-08-23T20:36:49Z) - On the Almost Sure Convergence of Stochastic Gradient Descent in
Non-Convex Problems [75.58134963501094]
This paper analyzes the trajectories of gradient descent (SGD)
We show that SGD avoids saddle points/manifolds with $1$ for strict step-size policies.
arXiv Detail & Related papers (2020-06-19T14:11:26Z) - Stochastic Proximal Gradient Algorithm with Minibatches. Application to
Large Scale Learning Models [2.384873896423002]
We develop and analyze minibatch variants of gradient algorithm for general composite objective functions with nonsmooth components.
We provide complexity for constant and variable stepsize iteration policies obtaining that, for minibatch size $N$, after $mathcalO(frac1Nepsilon)$ $epsilon-$subity is attained in expected quadratic distance to optimal solution.
arXiv Detail & Related papers (2020-03-30T10:43:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.