Instance-wise Hard Negative Example Generation for Contrastive Learning
in Unpaired Image-to-Image Translation
- URL: http://arxiv.org/abs/2108.04547v2
- Date: Wed, 11 Aug 2021 07:11:06 GMT
- Title: Instance-wise Hard Negative Example Generation for Contrastive Learning
in Unpaired Image-to-Image Translation
- Authors: Weilun Wang, Wengang Zhou, Jianmin Bao, Dong Chen and Houqiang Li
- Abstract summary: We present instance-wise hard Negative Example Generation for Contrastive learning in Unpaired image-to-image Translation (NEGCUT)
Specifically, we train a generator to produce negative examples online. The generator is novel from two perspectives: 1) it is instance-wise which means that the generated examples are based on the input image, and 2) it can generate hard negative examples since it is trained with an adversarial loss.
- Score: 102.99799162482283
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contrastive learning shows great potential in unpaired image-to-image
translation, but sometimes the translated results are in poor quality and the
contents are not preserved consistently. In this paper, we uncover that the
negative examples play a critical role in the performance of contrastive
learning for image translation. The negative examples in previous methods are
randomly sampled from the patches of different positions in the source image,
which are not effective to push the positive examples close to the query
examples. To address this issue, we present instance-wise hard Negative Example
Generation for Contrastive learning in Unpaired image-to-image Translation
(NEGCUT). Specifically, we train a generator to produce negative examples
online. The generator is novel from two perspectives: 1) it is instance-wise
which means that the generated examples are based on the input image, and 2) it
can generate hard negative examples since it is trained with an adversarial
loss. With the generator, the performance of unpaired image-to-image
translation is significantly improved. Experiments on three benchmark datasets
demonstrate that the proposed NEGCUT framework achieves state-of-the-art
performance compared to previous methods.
Related papers
- Enhancing Multimodal Compositional Reasoning of Visual Language Models
with Generative Negative Mining [58.379339799777064]
Large-scale visual language models (VLMs) exhibit strong representation capacities, making them ubiquitous for enhancing image and text understanding tasks.
We propose a framework that not only mines in both directions but also generates challenging negative samples in both modalities.
Our code and dataset are released at https://ugorsahin.github.io/enhancing-multimodal-compositional-reasoning-of-vlm.html.
arXiv Detail & Related papers (2023-11-07T13:05:47Z) - Your Negative May not Be True Negative: Boosting Image-Text Matching
with False Negative Elimination [62.18768931714238]
We propose a novel False Negative Elimination (FNE) strategy to select negatives via sampling.
The results demonstrate the superiority of our proposed false negative elimination strategy.
arXiv Detail & Related papers (2023-08-08T16:31:43Z) - Clustering-Aware Negative Sampling for Unsupervised Sentence
Representation [24.15096466098421]
ClusterNS is a novel method that incorporates cluster information into contrastive learning for unsupervised sentence representation learning.
We apply a modified K-means clustering algorithm to supply hard negatives and recognize in-batch false negatives during training.
arXiv Detail & Related papers (2023-05-17T02:06:47Z) - Exploring Negatives in Contrastive Learning for Unpaired Image-to-Image
Translation [12.754320302262533]
We introduce a new negative Pruning technology for Unpaired image-to-image Translation (PUT) by sparsifying and ranking the patches.
The proposed algorithm is efficient, flexible and enables the model to learn essential information between corresponding patches stably.
arXiv Detail & Related papers (2022-04-23T08:31:18Z) - Negative Sample is Negative in Its Own Way: Tailoring Negative Sentences
for Image-Text Retrieval [19.161248757493386]
We propose our TAiloring neGative Sentences with Discrimination and Correction (TAGS-DC) to generate synthetic sentences automatically as negative samples.
To keep the difficulty during training, we mutually improve the retrieval and generation through parameter sharing.
In experiments, we verify the effectiveness of our model on MS-COCO and Flickr30K compared with current state-of-the-art models.
arXiv Detail & Related papers (2021-11-05T09:36:41Z) - Doubly Contrastive Deep Clustering [135.7001508427597]
We present a novel Doubly Contrastive Deep Clustering (DCDC) framework, which constructs contrastive loss over both sample and class views.
Specifically, for the sample view, we set the class distribution of the original sample and its augmented version as positive sample pairs.
For the class view, we build the positive and negative pairs from the sample distribution of the class.
In this way, two contrastive losses successfully constrain the clustering results of mini-batch samples in both sample and class level.
arXiv Detail & Related papers (2021-03-09T15:15:32Z) - Contrastive Learning with Adversarial Perturbations for Conditional Text
Generation [49.055659008469284]
We propose a principled method to generate positive and negative samples for contrastive learning of seq2seq models.
Specifically, we generate negative examples by adding small perturbations to the input sequence to minimize its conditional likelihood.
We empirically show that our proposed method significantly improves the generalization of the seq2seq on three text generation tasks.
arXiv Detail & Related papers (2020-12-14T06:20:27Z) - Contrastive Learning with Hard Negative Samples [80.12117639845678]
We develop a new family of unsupervised sampling methods for selecting hard negative samples.
A limiting case of this sampling results in a representation that tightly clusters each class, and pushes different classes as far apart as possible.
The proposed method improves downstream performance across multiple modalities, requires only few additional lines of code to implement, and introduces no computational overhead.
arXiv Detail & Related papers (2020-10-09T14:18:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.