Quantum graphs: self-adjoint, and yet exhibiting a nontrivial
$\mathcal{PT}$-symmetry
- URL: http://arxiv.org/abs/2108.04708v1
- Date: Tue, 10 Aug 2021 14:11:55 GMT
- Title: Quantum graphs: self-adjoint, and yet exhibiting a nontrivial
$\mathcal{PT}$-symmetry
- Authors: Pavel Exner, Milos Tater
- Abstract summary: We demonstrate that a quantum graph exhibits a $mathcalPT$-symmetry provided the coefficients in the condition describing the wave function matching at the vertices are circulant matrices.
We also illustrate how the transport properties of such graphs are significantly influenced by the presence or absence of the non-Robin component of the coupling.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We demonstrate that a quantum graph exhibits a $\mathcal{PT}$-symmetry
provided the coefficients in the condition describing the wave function
matching at the vertices are circulant matrices; this symmetry is nontrivial if
they are not invariant with respect to transposition. We also illustrate how
the transport properties of such graphs are significantly influenced by the
presence or absence of the non-Robin component of the coupling.
Related papers
- Symmetry & Critical Points [7.23389716633927]
Critical points of an invariant function may or may not be symmetric.
We prove, however, that if a symmetric critical point exists adjacent to it are generic.
arXiv Detail & Related papers (2024-08-26T17:36:51Z) - Symmetry-restricted quantum circuits are still well-behaved [45.89137831674385]
We show that quantum circuits restricted by a symmetry inherit the properties of the whole special unitary group $SU(2n)$.
It extends prior work on symmetric states to the operators and shows that the operator space follows the same structure as the state space.
arXiv Detail & Related papers (2024-02-26T06:23:39Z) - Non-equilibrium entanglement asymmetry for discrete groups: the example
of the XY spin chain [0.0]
The entanglement asymmetry is a novel quantity that, using entanglement methods, measures how much a symmetry is broken in a part of an extended quantum system.
We consider the XY spin chain, in which the ground state spontaneously breaks the $mathbbZ$ spin parity symmetry in the ferromagnetic phase.
We thoroughly investigate the non-equilibrium dynamics of this symmetry after a global quantum quench, generalising known results for the standard order parameter.
arXiv Detail & Related papers (2023-07-13T17:01:38Z) - Quantum Current and Holographic Categorical Symmetry [62.07387569558919]
A quantum current is defined as symmetric operators that can transport symmetry charges over an arbitrary long distance.
The condition for quantum currents to be superconducting is also specified, which corresponds to condensation of anyons in one higher dimension.
arXiv Detail & Related papers (2023-05-22T11:00:25Z) - Towards Antisymmetric Neural Ansatz Separation [48.80300074254758]
We study separations between two fundamental models of antisymmetric functions, that is, functions $f$ of the form $f(x_sigma(1), ldots, x_sigma(N))
These arise in the context of quantum chemistry, and are the basic modeling tool for wavefunctions of Fermionic systems.
arXiv Detail & Related papers (2022-08-05T16:35:24Z) - Extremely broken generalized $\mathcal{PT}$ symmetry [0.0]
We discuss some simple H"uckel-like matrix representations of non-Hermitian operators with antiunitary symmetries.
One of them exhibits extremely broken antiunitary symmetry because of the degeneracy of the operator in the Hermitian limit.
arXiv Detail & Related papers (2022-06-22T13:38:40Z) - Symmetry protected entanglement in random mixed states [0.0]
We study the effect of symmetry on tripartite entanglement properties of typical states in symmetric sectors of Hilbert space.
In particular, we consider Abelian symmetries and derive an explicit expression for the logarithmic entanglement negativity of systems with $mathbbZ_N$ and $U(1)$ symmetry groups.
arXiv Detail & Related papers (2021-11-30T19:00:07Z) - Symmetry Breaking in Symmetric Tensor Decomposition [44.181747424363245]
We consider the nonsymmetry problem associated with computing the points rank decomposition of symmetric tensors.
We show that critical points the loss function is detected by standard methods.
arXiv Detail & Related papers (2021-03-10T18:11:22Z) - Hamiltonian systems, Toda lattices, Solitons, Lax Pairs on weighted
Z-graded graphs [62.997667081978825]
We identify conditions which allow one to lift one dimensional solutions to solutions on graphs.
We show that even for a simple example of a topologically interesting graph the corresponding non-trivial Lax pairs and associated unitary transformations do not lift to a Lax pair on the Z-graded graph.
arXiv Detail & Related papers (2020-08-11T17:58:13Z) - Generalized string-nets for unitary fusion categories without
tetrahedral symmetry [77.34726150561087]
We present a general construction of the Levin-Wen model for arbitrary multiplicity-free unitary fusion categories.
We explicitly calculate the matrix elements of the Hamiltonian and, furthermore, show that it has the same properties as the original one.
arXiv Detail & Related papers (2020-04-15T12:21:28Z) - Quantifying Algebraic Asymmetry of Hamiltonian Systems [0.0]
We study the symmetries of a Hamiltonian system by investigating the asymmetry of the Hamiltonian with respect to certain algebras.
The asymmetry of the $q$-deformed integrable spin chain models is calculated.
arXiv Detail & Related papers (2020-01-08T08:12:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.