Averaged circuit eigenvalue sampling
- URL: http://arxiv.org/abs/2108.05803v1
- Date: Thu, 12 Aug 2021 15:36:49 GMT
- Title: Averaged circuit eigenvalue sampling
- Authors: Steven T. Flammia
- Abstract summary: ACES stands for Averaged Circuit Eigenvalue Sampling.
It simultaneously estimates the individual error rates of all the gates in collections of quantum circuits.
- Score: 0.38073142980732994
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We introduce ACES, a method for scalable noise metrology of quantum circuits
that stands for Averaged Circuit Eigenvalue Sampling. It simultaneously
estimates the individual error rates of all the gates in collections of quantum
circuits, and can even account for space and time correlations between these
gates. ACES strictly generalizes randomized benchmarking (RB), interleaved RB,
simultaneous RB, and several other related techniques. However, ACES provides
much more information and provably works under strictly weaker assumptions than
these techniques. Finally, ACES is extremely scalable: we demonstrate with
numerical simulations that it simultaneously and precisely estimates all the
Pauli error rates on every gate and measurement in a 100 qubit quantum device
using fewer than 20 relatively shallow Clifford circuits and an experimentally
feasible number of samples. By learning the detailed gate errors for large
quantum devices, ACES opens new possibilities for error mitigation, bespoke
quantum error correcting codes and decoders, customized compilers, and more.
Related papers
- Readout Error Mitigation for Mid-Circuit Measurements and Feedforward [0.0]
Current-day quantum computing platforms are subject to readout errors.
We present a general method for readout error mitigation for expectation values on circuits with mid-circuit measurements and feedforward.
We demonstrate the effectiveness of our method, obtaining up to a $sim 60%$ reduction in error on superconducting quantum processors.
arXiv Detail & Related papers (2024-06-11T18:00:01Z) - Scalable noise characterisation of syndrome extraction circuits with averaged circuit eigenvalue sampling [0.0]
Averaged circuit eigenvalue sampling (ACES) is a general framework for the scalable noise characterisation of quantum circuits.
By rigorously analysing the performance of ACES experiments, we derive a figure of merit for their expected performance.
Our results indicate that detailed noise characterisation methods are scalable to near-term quantum devices.
arXiv Detail & Related papers (2024-04-09T18:00:30Z) - Average circuit eigenvalue sampling on NISQ devices [1.203335059314146]
Average circuit eigenvalue sampling (ACES) was introduced by Flammia in arXiv:2108.05803 as a protocol to characterize the Pauli error channels of individual gates across the device simultaneously.
This work advances in this direction by presenting a full implementation of ACES for real devices and deploying it to Superstaq arXiv:2309.05157.
Our simulations show that ACES is able to estimate one- and two-qubit non-uniform Pauli error channels to an average eigenvalue absolute error of under $0.003$.
arXiv Detail & Related papers (2024-03-19T16:02:35Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Averaging gate approximation error and performance of Unitary Coupled Cluster ansatz in Pre-FTQC Era [0.0]
Fault-tolerant quantum computation (FTQC) is essential to implement quantum algorithms in a noise-resilient way.
In FTQC, a quantum circuit is decomposed into universal gates that can be fault-tolerantly implemented.
In this paper, we propose that the Clifford+$T$ decomposition error for a given quantum circuit can be modeled as the depolarizing noise.
arXiv Detail & Related papers (2023-01-10T19:00:01Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Quantum error mitigation via matrix product operators [27.426057220671336]
Quantum error mitigation (QEM) can suppress errors in measurement results via repeated experiments and post decomposition of data.
MPO representation increases the accuracy of modeling noise without consuming more experimental resources.
Our method is hopeful of being applied to circuits in higher dimensions with more qubits and deeper depth.
arXiv Detail & Related papers (2022-01-03T16:57:43Z) - Sampling Overhead Analysis of Quantum Error Mitigation: Uncoded vs.
Coded Systems [69.33243249411113]
We show that Pauli errors incur the lowest sampling overhead among a large class of realistic quantum channels.
We conceive a scheme amalgamating QEM with quantum channel coding, and analyse its sampling overhead reduction compared to pure QEM.
arXiv Detail & Related papers (2020-12-15T15:51:27Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.