Room Classification on Floor Plan Graphs using Graph Neural Networks
- URL: http://arxiv.org/abs/2108.05947v1
- Date: Thu, 12 Aug 2021 19:59:22 GMT
- Title: Room Classification on Floor Plan Graphs using Graph Neural Networks
- Authors: Abhishek Paudel, Roshan Dhakal and Sakshat Bhattarai
- Abstract summary: We present our approach to improve room classification task on floor plan maps of buildings by representing floor plans as undirected graphs.
Rooms in the floor plans are represented as nodes in the graph with edges representing their adjacency in the map.
Our results show that graph neural networks, specifically GraphSAGE and Topology Adaptive GCN were able to achieve accuracy of 80% and 81% respectively.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present our approach to improve room classification task on floor plan
maps of buildings by representing floor plans as undirected graphs and
leveraging graph neural networks to predict the room categories. Rooms in the
floor plans are represented as nodes in the graph with edges representing their
adjacency in the map. We experiment with House-GAN dataset that consists of
floor plan maps in vector format and train multilayer perceptron and graph
neural networks. Our results show that graph neural networks, specifically
GraphSAGE and Topology Adaptive GCN were able to achieve accuracy of 80% and
81% respectively outperforming baseline multilayer perceptron by more than 15%
margin.
Related papers
- Knowledge Probing for Graph Representation Learning [12.960185655357495]
We propose a novel graph probing framework (GraphProbe) to investigate and interpret whether the family of graph learning methods has encoded different levels of knowledge in graph representation learning.
Based on the intrinsic properties of graphs, we design three probes to systematically investigate the graph representation learning process from different perspectives.
We construct a thorough evaluation benchmark with nine representative graph learning methods from random walk based approaches, basic graph neural networks and self-supervised graph methods, and probe them on six benchmark datasets for node classification, link prediction and graph classification.
arXiv Detail & Related papers (2024-08-07T16:27:45Z) - Graph Convolutional Network For Semi-supervised Node Classification With Subgraph Sketching [0.27624021966289597]
We propose the Graph-Learning-Dual Graph Convolutional Neural Network called GLDGCN.
We apply GLDGCN to the semi-supervised node classification task.
Compared with the baseline methods, we achieve higher classification accuracy on three citation networks.
arXiv Detail & Related papers (2024-04-19T09:08:12Z) - GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
Graph neural networks are increasingly becoming the framework of choice for graph-based machine learning.
We propose a new graph neural network architecture that substitutes classical message passing with an analysis of the local distribution of node features.
arXiv Detail & Related papers (2024-01-17T13:04:23Z) - A Survey on Graph Classification and Link Prediction based on GNN [11.614366568937761]
This review article delves into the world of graph convolutional neural networks.
It elaborates on the fundamentals of graph convolutional neural networks.
It elucidates the graph neural network models based on attention mechanisms and autoencoders.
arXiv Detail & Related papers (2023-07-03T09:08:01Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Capsule Graph Neural Networks with EM Routing [8.632437524560133]
This paper proposed novel Capsule Graph Neural Networks that use the EM routing mechanism (CapsGNNEM) to generate high-quality graph embeddings.
Experimental results on a number of real-world graph datasets demonstrate that the proposed CapsGNNEM outperforms nine state-of-the-art models in graph classification tasks.
arXiv Detail & Related papers (2021-10-18T06:23:37Z) - Graph Structure of Neural Networks [104.33754950606298]
We show how the graph structure of neural networks affect their predictive performance.
A "sweet spot" of relational graphs leads to neural networks with significantly improved predictive performance.
Top-performing neural networks have graph structure surprisingly similar to those of real biological neural networks.
arXiv Detail & Related papers (2020-07-13T17:59:31Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
We propose a multi-level graph matching network (MGMN) framework for computing the graph similarity between any pair of graph-structured objects.
To compensate for the lack of standard benchmark datasets, we have created and collected a set of datasets for both the graph-graph classification and graph-graph regression tasks.
Comprehensive experiments demonstrate that MGMN consistently outperforms state-of-the-art baseline models on both the graph-graph classification and graph-graph regression tasks.
arXiv Detail & Related papers (2020-07-08T19:48:19Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z) - Customized Graph Neural Networks [38.30640892828196]
Graph Neural Networks (GNNs) have greatly advanced the task of graph classification.
We propose a novel customized graph neural network framework, i.e., Customized-GNN.
The proposed framework is very general that can be applied to numerous existing graph neural network models.
arXiv Detail & Related papers (2020-05-22T05:22:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.