Double-twisted spectroscopy with delocalized atoms
- URL: http://arxiv.org/abs/2108.06045v1
- Date: Fri, 13 Aug 2021 03:40:43 GMT
- Title: Double-twisted spectroscopy with delocalized atoms
- Authors: Igor P. Ivanov
- Abstract summary: In almost all studies of light-atom interaction, the atom is viewed as a localized probe of the twisted light field.
This paper argues that conceptually novel effects will arise if light-atom interaction is studied in the double-twisted regime with delocalized atoms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interaction of atoms with twisted light is the subject of intense
experimental and theoretical investigation. In almost all studies, the atom is
viewed as a localized probe of the twisted light field. However, as argued in
this paper, conceptually novel effects will arise if light-atom interaction is
studied in the double-twisted regime with delocalized atoms, that is, either
via twisted light absorption by atom vortex beam, or via two-twisted-photon
spectroscopy of atoms in a non-vortex but delocalized state. Even for
monochromatic twisted photons and for an infinitely narrow line, absorption
will occur over a finite range of detuning. Inside this range, a rapidly
varying absorption probability is predicted, revealing interference fringes
induced by two distinct paths leading to the same final state. The number,
location, height and contrast of these fringes can give additional information
on the excitation process which would not be accessible in usual spectroscopic
settings. Visibility of the predicted effects will be enhanced at the future
Gamma factory thanks to the large momenta of ions.
Related papers
- Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Interference of cavity light by a single atom acting as a double slit [5.951810889409693]
We show that when a single atom tunneling in a double well is coupled to an optical ring cavity, the interference phenomena arise.
Being driven by an external laser in the dispersive regime, the field emitted by the atom into the cavity exhibits an interference pattern.
Our work opens ways to manipulate photons with controllable external states of atoms for quantum information applications.
arXiv Detail & Related papers (2023-06-12T11:36:24Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Dicke superradiance in ordered arrays of multilevel atoms [0.0]
In inverted atomic ensembles, photon-mediated interactions give rise to Dicke superradiance, a form of many-body decay.
Here, we investigate Dicke superradiance in a realistic experimental setting using ordered arrays of alkaline-earth(-like) atoms.
Our work represents an important step in harnessing alkaline-earth atoms as quantum optical sources.
arXiv Detail & Related papers (2023-03-31T19:33:35Z) - The maximum refractive index of an atomic crystal $\unicode{x2013}$ from
quantum optics to quantum chemistry [52.77024349608834]
We investigate the index of an ordered arrangement of atoms, as a function of atomic density.
In quantum optics, we show that ideal light-matter interactions can have a single-mode nature.
At the onset of quantum chemistry, we show how two physical mechanisms can open up inelastic or spatial multi-mode light scattering processes.
arXiv Detail & Related papers (2023-03-20T10:29:12Z) - Probing and harnessing photonic Fermi arc surface states using
light-matter interactions [62.997667081978825]
We show how to image the Fermi arcs by studying the spontaneous decay of one or many emitters coupled to the system's border.
We demonstrate that the Fermi arc surface states can act as a robust quantum link.
arXiv Detail & Related papers (2022-10-17T13:17:55Z) - Optical Stern-Gerlach effect via a single traveling-wave light [0.0]
spin-orbit coupling induced chiral motion in atom deflection appears under the strong atom-light interaction.
Superposition of distant matter waves connected to the arbitrary distribution of atom internal state could be predicted.
arXiv Detail & Related papers (2022-04-06T14:35:49Z) - Single Photon Scattering Can Account for the Discrepancies Between
Entangled Two-Photon Measurement Techniques [0.0]
Entangled photon pairs are predicted to linearize and increase the efficiency of two-photon absorption.
Despite a range of theoretical studies and experimental measurements, inconsistencies persist about the value of the entanglement enhanced interaction cross section.
A spectrometer is constructed that can temporally and spectrally characterize the entangled photon state.
arXiv Detail & Related papers (2022-02-23T20:14:11Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z) - Maximum refractive index of an atomic medium [58.720142291102135]
All optical materials with a positive refractive index have a value of index that is of order unity.
Despite the giant response of an isolated atom, we find that the maximum index does not indefinitely grow with increasing density.
We propose an explanation based upon strong-disorder renormalization group theory.
arXiv Detail & Related papers (2020-06-02T14:57:36Z) - Entangled light-matter interactions and spectroscopy [0.0]
Entangled photons exhibit non-classical light-matter interactions that create new opportunities in materials and molecular science.
In entangled two-photon absorption, the intensity-dependence scales linearly as if only one photon was present.
It is time to start the exploration of how materials, molecules, and devices can control or utilize interactions with entangled photons.
arXiv Detail & Related papers (2020-04-07T08:18:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.