Focus on the Positives: Self-Supervised Learning for Biodiversity
Monitoring
- URL: http://arxiv.org/abs/2108.06435v1
- Date: Sat, 14 Aug 2021 01:12:41 GMT
- Title: Focus on the Positives: Self-Supervised Learning for Biodiversity
Monitoring
- Authors: Omiros Pantazis, Gabriel Brostow, Kate Jones, Oisin Mac Aodha
- Abstract summary: We address the problem of learning self-supervised representations from unlabeled image collections.
We exploit readily available context data that encodes information such as the spatial and temporal relationships between the input images.
For the critical task of global biodiversity monitoring, this results in image features that can be adapted to challenging visual species classification tasks with limited human supervision.
- Score: 9.086207853136054
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the problem of learning self-supervised representations from
unlabeled image collections. Unlike existing approaches that attempt to learn
useful features by maximizing similarity between augmented versions of each
input image or by speculatively picking negative samples, we instead also make
use of the natural variation that occurs in image collections that are captured
using static monitoring cameras. To achieve this, we exploit readily available
context data that encodes information such as the spatial and temporal
relationships between the input images. We are able to learn representations
that are surprisingly effective for downstream supervised classification, by
first identifying high probability positive pairs at training time, i.e. those
images that are likely to depict the same visual concept. For the critical task
of global biodiversity monitoring, this results in image features that can be
adapted to challenging visual species classification tasks with limited human
supervision. We present results on four different camera trap image
collections, across three different families of self-supervised learning
methods, and show that careful image selection at training time results in
superior performance compared to existing baselines such as conventional
self-supervised training and transfer learning.
Related papers
- ProbMCL: Simple Probabilistic Contrastive Learning for Multi-label Visual Classification [16.415582577355536]
Multi-label image classification presents a challenging task in many domains, including computer vision and medical imaging.
Recent advancements have introduced graph-based and transformer-based methods to improve performance and capture label dependencies.
We propose Probabilistic Multi-label Contrastive Learning (ProbMCL), a novel framework to address these challenges.
arXiv Detail & Related papers (2024-01-02T22:15:20Z) - Unsupervised Feature Clustering Improves Contrastive Representation
Learning for Medical Image Segmentation [18.75543045234889]
Self-supervised instance discrimination is an effective contrastive pretext task to learn feature representations and address limited medical image annotations.
We propose a new self-supervised contrastive learning method that uses unsupervised feature clustering to better select positive and negative image samples.
Our method outperforms state-of-the-art self-supervised contrastive techniques on these tasks.
arXiv Detail & Related papers (2022-11-15T22:54:29Z) - LEAD: Self-Supervised Landmark Estimation by Aligning Distributions of
Feature Similarity [49.84167231111667]
Existing works in self-supervised landmark detection are based on learning dense (pixel-level) feature representations from an image.
We introduce an approach to enhance the learning of dense equivariant representations in a self-supervised fashion.
We show that having such a prior in the feature extractor helps in landmark detection, even under drastically limited number of annotations.
arXiv Detail & Related papers (2022-04-06T17:48:18Z) - Mix-up Self-Supervised Learning for Contrast-agnostic Applications [33.807005669824136]
We present the first mix-up self-supervised learning framework for contrast-agnostic applications.
We address the low variance across images based on cross-domain mix-up and build the pretext task based on image reconstruction and transparency prediction.
arXiv Detail & Related papers (2022-04-02T16:58:36Z) - UniVIP: A Unified Framework for Self-Supervised Visual Pre-training [50.87603616476038]
We propose a novel self-supervised framework to learn versatile visual representations on either single-centric-object or non-iconic dataset.
Massive experiments show that UniVIP pre-trained on non-iconic COCO achieves state-of-the-art transfer performance.
Our method can also exploit single-centric-object dataset such as ImageNet and outperforms BYOL by 2.5% with the same pre-training epochs in linear probing.
arXiv Detail & Related papers (2022-03-14T10:04:04Z) - Object-aware Contrastive Learning for Debiased Scene Representation [74.30741492814327]
We develop a novel object-aware contrastive learning framework that localizes objects in a self-supervised manner.
We also introduce two data augmentations based on ContraCAM, object-aware random crop and background mixup, which reduce contextual and background biases during contrastive self-supervised learning.
arXiv Detail & Related papers (2021-07-30T19:24:07Z) - Multi-Label Image Classification with Contrastive Learning [57.47567461616912]
We show that a direct application of contrastive learning can hardly improve in multi-label cases.
We propose a novel framework for multi-label classification with contrastive learning in a fully supervised setting.
arXiv Detail & Related papers (2021-07-24T15:00:47Z) - Multimodal Contrastive Training for Visual Representation Learning [45.94662252627284]
We develop an approach to learning visual representations that embraces multimodal data.
Our method exploits intrinsic data properties within each modality and semantic information from cross-modal correlation simultaneously.
By including multimodal training in a unified framework, our method can learn more powerful and generic visual features.
arXiv Detail & Related papers (2021-04-26T19:23:36Z) - Unsupervised Deep Metric Learning with Transformed Attention Consistency
and Contrastive Clustering Loss [28.17607283348278]
Existing approaches for unsupervised metric learning focus on exploring self-supervision information within the input image itself.
We observe that, when analyzing images, human eyes often compare images against each other instead of examining images individually.
We develop a new approach to unsupervised deep metric learning where the network is learned based on self-supervision information across images.
arXiv Detail & Related papers (2020-08-10T19:33:47Z) - Unsupervised Landmark Learning from Unpaired Data [117.81440795184587]
Recent attempts for unsupervised landmark learning leverage synthesized image pairs that are similar in appearance but different in poses.
We propose a cross-image cycle consistency framework which applies the swapping-reconstruction strategy twice to obtain the final supervision.
Our proposed framework is shown to outperform strong baselines by a large margin.
arXiv Detail & Related papers (2020-06-29T13:57:20Z) - Distilling Localization for Self-Supervised Representation Learning [82.79808902674282]
Contrastive learning has revolutionized unsupervised representation learning.
Current contrastive models are ineffective at localizing the foreground object.
We propose a data-driven approach for learning in variance to backgrounds.
arXiv Detail & Related papers (2020-04-14T16:29:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.