Self-supervised Contrastive Learning of Multi-view Facial Expressions
- URL: http://arxiv.org/abs/2108.06723v1
- Date: Sun, 15 Aug 2021 11:23:34 GMT
- Title: Self-supervised Contrastive Learning of Multi-view Facial Expressions
- Authors: Shuvendu Roy, Ali Etemad
- Abstract summary: Facial expression recognition (FER) has emerged as an important component of human-computer interaction systems.
We propose Contrastive Learning of Multi-view facial Expressions (CL-MEx) to exploit facial images captured simultaneously from different angles towards FER.
- Score: 9.949781365631557
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Facial expression recognition (FER) has emerged as an important component of
human-computer interaction systems. Despite recent advancements in FER,
performance often drops significantly for non-frontal facial images. We propose
Contrastive Learning of Multi-view facial Expressions (CL-MEx) to exploit
facial images captured simultaneously from different angles towards FER. CL-MEx
is a two-step training framework. In the first step, an encoder network is
pre-trained with the proposed self-supervised contrastive loss, where it learns
to generate view-invariant embeddings for different views of a subject. The
model is then fine-tuned with labeled data in a supervised setting. We
demonstrate the performance of the proposed method on two multi-view FER
datasets, KDEF and DDCF, where state-of-the-art performances are achieved.
Further experiments show the robustness of our method in dealing with
challenging angles and reduced amounts of labeled data.
Related papers
- Bridging the Gaps: Utilizing Unlabeled Face Recognition Datasets to Boost Semi-Supervised Facial Expression Recognition [5.750927184237346]
We focus on utilizing large unlabeled Face Recognition (FR) datasets to boost semi-supervised FER.
Specifically, we first perform face reconstruction pre-training on large-scale facial images without annotations.
To further alleviate the scarcity of labeled and diverse images, we propose a Mixup-based data augmentation strategy.
arXiv Detail & Related papers (2024-10-23T07:26:19Z) - UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
High-level semantic features are less susceptible to perturbations and not limited to forgery-specific artifacts, thus having stronger generalization.
We introduce UniForensics, a novel deepfake detection framework that leverages a transformer-based video network, with a meta-functional face classification for enriched facial representation.
arXiv Detail & Related papers (2024-07-26T20:51:54Z) - Freeview Sketching: View-Aware Fine-Grained Sketch-Based Image Retrieval [85.73149096516543]
We address the choice of viewpoint during sketch creation in Fine-Grained Sketch-Based Image Retrieval (FG-SBIR)
A pilot study highlights the system's struggle when query-sketches differ in viewpoint from target instances.
To reconcile this, we advocate for a view-aware system, seamlessly accommodating both view-agnostic and view-specific tasks.
arXiv Detail & Related papers (2024-07-01T21:20:44Z) - Emotic Masked Autoencoder with Attention Fusion for Facial Expression Recognition [1.4374467687356276]
This paper presents an innovative approach integrating the MAE-Face self-supervised learning (SSL) method and multi-view Fusion Attention mechanism for expression classification.
We suggest easy-to-implement and no-training frameworks aimed at highlighting key facial features to determine if such features can serve as guides for the model.
The efficacy of this method is validated by improvements in model performance on the Aff-wild2 dataset.
arXiv Detail & Related papers (2024-03-19T16:21:47Z) - Contrastive Learning of View-Invariant Representations for Facial
Expressions Recognition [27.75143621836449]
We propose ViewFX, a novel view-invariant FER framework based on contrastive learning.
We test the proposed framework on two public multi-view facial expression recognition datasets.
arXiv Detail & Related papers (2023-11-12T14:05:09Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - CIAO! A Contrastive Adaptation Mechanism for Non-Universal Facial
Expression Recognition [80.07590100872548]
We propose Contrastive Inhibitory Adaptati On (CIAO), a mechanism that adapts the last layer of facial encoders to depict specific affective characteristics on different datasets.
CIAO presents an improvement in facial expression recognition performance over six different datasets with very unique affective representations.
arXiv Detail & Related papers (2022-08-10T15:46:05Z) - Exploiting Emotional Dependencies with Graph Convolutional Networks for
Facial Expression Recognition [31.40575057347465]
This paper proposes a novel multi-task learning framework to recognize facial expressions in-the-wild.
A shared feature representation is learned for both discrete and continuous recognition in a MTL setting.
The results of our experiments show that our method outperforms the current state-of-the-art methods on discrete FER.
arXiv Detail & Related papers (2021-06-07T10:20:05Z) - Joint Deep Learning of Facial Expression Synthesis and Recognition [97.19528464266824]
We propose a novel joint deep learning of facial expression synthesis and recognition method for effective FER.
The proposed method involves a two-stage learning procedure. Firstly, a facial expression synthesis generative adversarial network (FESGAN) is pre-trained to generate facial images with different facial expressions.
In order to alleviate the problem of data bias between the real images and the synthetic images, we propose an intra-class loss with a novel real data-guided back-propagation (RDBP) algorithm.
arXiv Detail & Related papers (2020-02-06T10:56:00Z) - Learning to Augment Expressions for Few-shot Fine-grained Facial
Expression Recognition [98.83578105374535]
We present a novel Fine-grained Facial Expression Database - F2ED.
It includes more than 200k images with 54 facial expressions from 119 persons.
Considering the phenomenon of uneven data distribution and lack of samples is common in real-world scenarios, we evaluate several tasks of few-shot expression learning.
We propose a unified task-driven framework - Compositional Generative Adversarial Network (Comp-GAN) learning to synthesize facial images.
arXiv Detail & Related papers (2020-01-17T03:26:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.