A Cascaded Zoom-In Network for Patterned Fabric Defect Detection
- URL: http://arxiv.org/abs/2108.06760v1
- Date: Sun, 15 Aug 2021 15:29:26 GMT
- Title: A Cascaded Zoom-In Network for Patterned Fabric Defect Detection
- Authors: Zhiwei Zhang
- Abstract summary: We propose a two-step Cascaded Zoom-In Network (CZI-Net) for patterned fabric defect detection.
In the CZI-Net, the Aggregated HOG (A-HOG) and SIFT features are used to instead of simple convolution filters for feature extraction.
Experiments based on real-world datasets are implemented and demonstrate that our proposed method is not only computationally simple but also with high detection accuracy.
- Score: 8.789819609485225
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nowadays, Deep Convolutional Neural Networks (DCNNs) are widely used in
fabric defect detection, which come with the cost of expensive training and
complex model parameters. With the observation that most fabrics are defect
free in practice, a two-step Cascaded Zoom-In Network (CZI-Net) is proposed for
patterned fabric defect detection. In the CZI-Net, the Aggregated HOG (A-HOG)
and SIFT features are used to instead of simple convolution filters for feature
extraction. Moreover, in order to extract more distinctive features, the
feature representation layer and full connection layer are included in the
CZI-Net. In practice, Most defect-free fabrics only involve in the first step
of our method and avoid a costive computation in the second step, which makes
very fast fabric detection. More importantly, we propose the
Locality-constrained Reconstruction Error (LCRE) in the first step and
Restrictive Locality-constrained Coding (RLC), Bag-of-Indexes (BoI) methods in
the second step. We also analyse the connections between different coding
methods and conclude that the index of visual words plays an essential role in
the coding methods. In conclusion, experiments based on real-world datasets are
implemented and demonstrate that our proposed method is not only
computationally simple but also with high detection accuracy.
Related papers
- Faster Than Lies: Real-time Deepfake Detection using Binary Neural Networks [0.0]
Deepfake detection aims to contrast the spread of deep-generated media that undermines trust in online content.
We introduce a novel deepfake detection approach on images using Binary Neural Networks (BNNs) for fast inference with minimal accuracy loss.
arXiv Detail & Related papers (2024-06-07T13:37:36Z) - Global Context Aggregation Network for Lightweight Saliency Detection of
Surface Defects [70.48554424894728]
We develop a Global Context Aggregation Network (GCANet) for lightweight saliency detection of surface defects on the encoder-decoder structure.
First, we introduce a novel transformer encoder on the top layer of the lightweight backbone, which captures global context information through a novel Depth-wise Self-Attention (DSA) module.
The experimental results on three public defect datasets demonstrate that the proposed network achieves a better trade-off between accuracy and running efficiency compared with other 17 state-of-the-art methods.
arXiv Detail & Related papers (2023-09-22T06:19:11Z) - PRISTA-Net: Deep Iterative Shrinkage Thresholding Network for Coded
Diffraction Patterns Phase Retrieval [6.982256124089]
Phase retrieval is a challenge nonlinear inverse problem in computational imaging and image processing.
We have developed PRISTA-Net, a deep unfolding network based on the first-order iterative threshold threshold algorithm (ISTA)
All parameters in the proposed PRISTA-Net framework, including the nonlinear transformation, threshold, and step size, are learned-to-end instead of being set.
arXiv Detail & Related papers (2023-09-08T07:37:15Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Efficient Decoder-free Object Detection with Transformers [75.00499377197475]
Vision transformers (ViTs) are changing the landscape of object detection approaches.
We propose a decoder-free fully transformer-based (DFFT) object detector.
DFFT_SMALL achieves high efficiency in both training and inference stages.
arXiv Detail & Related papers (2022-06-14T13:22:19Z) - Real-Time Scene Text Detection with Differentiable Binarization and
Adaptive Scale Fusion [62.269219152425556]
segmentation-based scene text detection methods have drawn extensive attention in the scene text detection field.
We propose a Differentiable Binarization (DB) module that integrates the binarization process into a segmentation network.
An efficient Adaptive Scale Fusion (ASF) module is proposed to improve the scale robustness by fusing features of different scales adaptively.
arXiv Detail & Related papers (2022-02-21T15:30:14Z) - MetricUNet: Synergistic Image- and Voxel-Level Learning for Precise CT
Prostate Segmentation via Online Sampling [66.01558025094333]
We propose a two-stage framework, with the first stage to quickly localize the prostate region and the second stage to precisely segment the prostate.
We introduce a novel online metric learning module through voxel-wise sampling in the multi-task network.
Our method can effectively learn more representative voxel-level features compared with the conventional learning methods with cross-entropy or Dice loss.
arXiv Detail & Related papers (2020-05-15T10:37:02Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z) - Selective Convolutional Network: An Efficient Object Detector with
Ignoring Background [28.591619763438054]
We introduce an efficient object detector called Selective Convolutional Network (SCN), which selectively calculates only on the locations that contain meaningful and conducive information.
To solve it, we design an elaborate structure with negligible overheads to guide the network where to look next.
arXiv Detail & Related papers (2020-02-04T10:07:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.