Cross-Image Region Mining with Region Prototypical Network for Weakly
Supervised Segmentation
- URL: http://arxiv.org/abs/2108.07413v1
- Date: Tue, 17 Aug 2021 02:51:02 GMT
- Title: Cross-Image Region Mining with Region Prototypical Network for Weakly
Supervised Segmentation
- Authors: Weide Liu, Xiangfei Kong, Tzu-Yi Hung, Guosheng Lin
- Abstract summary: We propose a region network RPNet to explore the cross-image object diversity of the training set.
Similar object parts across images are identified via region feature comparison.
Experiments show that the proposed method generates more complete and accurate pseudo object masks.
- Score: 45.39679291105364
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Weakly supervised image segmentation trained with image-level labels usually
suffers from inaccurate coverage of object areas during the generation of the
pseudo groundtruth. This is because the object activation maps are trained with
the classification objective and lack the ability to generalize. To improve the
generality of the objective activation maps, we propose a region prototypical
network RPNet to explore the cross-image object diversity of the training set.
Similar object parts across images are identified via region feature
comparison. Object confidence is propagated between regions to discover new
object areas while background regions are suppressed. Experiments show that the
proposed method generates more complete and accurate pseudo object masks, while
achieving state-of-the-art performance on PASCAL VOC 2012 and MS COCO. In
addition, we investigate the robustness of the proposed method on reduced
training sets.
Related papers
- Question-Answer Cross Language Image Matching for Weakly Supervised
Semantic Segmentation [37.15828464616587]
Class Activation Map (CAM) has emerged as a popular tool for weakly supervised semantic segmentation.
We propose a novel Question-Answer Cross-Language-Image Matching framework for WSSS (QA-CLIMS)
arXiv Detail & Related papers (2024-01-18T10:55:13Z) - COMNet: Co-Occurrent Matching for Weakly Supervised Semantic
Segmentation [13.244183864948848]
We propose a novel Co-Occurrent Matching Network (COMNet), which can promote the quality of the CAMs and enforce the network to pay attention to the entire parts of objects.
Specifically, we perform inter-matching on paired images that contain common classes to enhance the corresponded areas, and construct intra-matching on a single image to propagate the semantic features across the object regions.
The experiments on the Pascal VOC 2012 and MS-COCO datasets show that our network can effectively boost the performance of the baseline model and achieve new state-of-the-art performance.
arXiv Detail & Related papers (2023-09-29T03:55:24Z) - Background Activation Suppression for Weakly Supervised Object
Localization and Semantic Segmentation [84.62067728093358]
Weakly supervised object localization and semantic segmentation aim to localize objects using only image-level labels.
New paradigm has emerged by generating a foreground prediction map to achieve pixel-level localization.
This paper presents two astonishing experimental observations on the object localization learning process.
arXiv Detail & Related papers (2023-09-22T15:44:10Z) - DQnet: Cross-Model Detail Querying for Camouflaged Object Detection [54.82390534024954]
A convolutional neural network (CNN) for camouflaged object detection tends to activate local discriminative regions while ignoring complete object extent.
In this paper, we argue that partial activation is caused by the intrinsic characteristics of CNN.
In order to obtain feature maps that could activate full object extent, a novel framework termed Cross-Model Detail Querying network (DQnet) is proposed.
arXiv Detail & Related papers (2022-12-16T06:23:58Z) - Anti-Adversarially Manipulated Attributions for Weakly Supervised
Semantic Segmentation and Object Localization [31.69344455448125]
We present an attribution map of an image that is manipulated to increase the classification score produced by a classifier before the final softmax or sigmoid layer.
This manipulation is realized in an anti-adversarial manner, so that the original image is perturbed along pixel gradients in directions opposite to those used in an adversarial attack.
In addition, we introduce a new regularization procedure that inhibits the incorrect attribution of regions unrelated to the target object and the excessive concentration of attributions on a small region of the target object.
arXiv Detail & Related papers (2022-04-11T06:18:02Z) - Contrastive learning of Class-agnostic Activation Map for Weakly
Supervised Object Localization and Semantic Segmentation [32.76127086403596]
We propose Contrastive learning for Class-agnostic Activation Map (C$2$AM) generation using unlabeled image data.
We form the positive and negative pairs based on the above relations and force the network to disentangle foreground and background.
As the network is guided to discriminate cross-image foreground-background, the class-agnostic activation maps learned by our approach generate more complete object regions.
arXiv Detail & Related papers (2022-03-25T08:46:24Z) - Non-Salient Region Object Mining for Weakly Supervised Semantic
Segmentation [64.2719590819468]
We propose a non-salient region object mining approach for weakly supervised semantic segmentation.
A potential object mining module is proposed to reduce the false-negative rate in pseudo labels.
Our non-salient region masking module helps further discover the objects in the non-salient region.
arXiv Detail & Related papers (2021-03-26T16:44:03Z) - Self-supervised Segmentation via Background Inpainting [96.10971980098196]
We introduce a self-supervised detection and segmentation approach that can work with single images captured by a potentially moving camera.
We exploit a self-supervised loss function that we exploit to train a proposal-based segmentation network.
We apply our method to human detection and segmentation in images that visually depart from those of standard benchmarks and outperform existing self-supervised methods.
arXiv Detail & Related papers (2020-11-11T08:34:40Z) - Weakly-Supervised Semantic Segmentation via Sub-category Exploration [73.03956876752868]
We propose a simple yet effective approach to enforce the network to pay attention to other parts of an object.
Specifically, we perform clustering on image features to generate pseudo sub-categories labels within each annotated parent class.
We conduct extensive analysis to validate the proposed method and show that our approach performs favorably against the state-of-the-art approaches.
arXiv Detail & Related papers (2020-08-03T20:48:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.