Out-of-Distribution Detection using Outlier Detection Methods
- URL: http://arxiv.org/abs/2108.08218v1
- Date: Wed, 18 Aug 2021 16:05:53 GMT
- Title: Out-of-Distribution Detection using Outlier Detection Methods
- Authors: Jan Diers and Christian Pigorsch
- Abstract summary: Out-of-distribution detection (OOD) deals with anomalous input to neural networks.
We use outlier detection algorithms to detect anomalous input as reliable as specialized methods from the field of OOD.
No neural network adaptation is required; detection is based on the model's softmax score.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Out-of-distribution detection (OOD) deals with anomalous input to neural
networks. In the past, specialized methods have been proposed to reject
predictions on anomalous input. We use outlier detection algorithms to detect
anomalous input as reliable as specialized methods from the field of OOD. No
neural network adaptation is required; detection is based on the model's
softmax score. Our approach works unsupervised with an Isolation Forest or with
supervised classifiers such as a Gradient Boosting machine.
Related papers
- Can I trust my anomaly detection system? A case study based on explainable AI [0.4416503115535552]
This case study explores the robustness of an anomaly detection system based on variational autoencoder generative models.
The goal is to get a different perspective on the real performances of anomaly detectors that use reconstruction differences.
arXiv Detail & Related papers (2024-07-29T12:39:07Z) - Out-of-Distribution Detection with a Single Unconditional Diffusion Model [54.15132801131365]
Out-of-distribution (OOD) detection is a critical task in machine learning that seeks to identify abnormal samples.
Traditionally, unsupervised methods utilize a deep generative model for OOD detection.
This paper explores whether a single model can perform OOD detection across diverse tasks.
arXiv Detail & Related papers (2024-05-20T08:54:03Z) - Window-Based Distribution Shift Detection for Deep Neural Networks [21.73028341299301]
We study the case of monitoring the healthy operation of a deep neural network (DNN) receiving a stream of data.
Using selective prediction principles, we propose a distribution deviation detection method for DNNs.
Our novel detection method performs on-par or better than the state-of-the-art, while consuming substantially lower time.
arXiv Detail & Related papers (2022-10-19T21:27:25Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - TracInAD: Measuring Influence for Anomaly Detection [0.0]
This paper proposes a novel methodology to flag anomalies based on TracIn.
We test our approach using Variational Autoencoders and show that the average influence of a subsample of training points on a test point can serve as a proxy for abnormality.
arXiv Detail & Related papers (2022-05-03T08:20:15Z) - Model2Detector:Widening the Information Bottleneck for
Out-of-Distribution Detection using a Handful of Gradient Steps [12.263417500077383]
Out-of-distribution detection is an important capability that has long eluded vanilla neural networks.
Recent advances in inference-time out-of-distribution detection help mitigate some of these problems.
We show how our method consistently outperforms the state-of-the-art in detection accuracy on popular image datasets.
arXiv Detail & Related papers (2022-02-22T23:03:40Z) - iDECODe: In-distribution Equivariance for Conformal Out-of-distribution
Detection [24.518698391381204]
Machine learning methods such as deep neural networks (DNNs) often generate incorrect predictions with high confidence.
We propose the new method iDECODe, leveraging in-distribution equivariance for conformal OOD detection.
We demonstrate the efficacy of iDECODe by experiments on image and audio datasets, obtaining state-of-the-art results.
arXiv Detail & Related papers (2022-01-07T05:21:40Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
We introduce a novel technique, DAAIN, to detect out-of-distribution (OOD) inputs and adversarial attacks (AA)
Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution.
Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
arXiv Detail & Related papers (2021-05-30T22:07:13Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.