Towards More Efficient Federated Learning with Better Optimization
Objects
- URL: http://arxiv.org/abs/2108.08577v1
- Date: Thu, 19 Aug 2021 09:29:17 GMT
- Title: Towards More Efficient Federated Learning with Better Optimization
Objects
- Authors: Zirui Zhu, Ziyi Ye
- Abstract summary: Federated Learning (FL) is a privacy-protected machine learning paradigm that allows model to be trained directly at the edge without uploading data.
One of the biggest challenges faced by FL in practical applications is the heterogeneity of edge node data, which will slow down the convergence speed and degrade the performance of the model.
We propose to use the aggregation of all models obtained in the past as new constraint target to further improve the performance of such algorithms.
- Score: 1.126965032229697
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) is a privacy-protected machine learning paradigm that
allows model to be trained directly at the edge without uploading data. One of
the biggest challenges faced by FL in practical applications is the
heterogeneity of edge node data, which will slow down the convergence speed and
degrade the performance of the model. For the above problems, a representative
solution is to add additional constraints in the local training, such as
FedProx, FedCurv and FedCL. However, the above algorithms still have room for
improvement. We propose to use the aggregation of all models obtained in the
past as new constraint target to further improve the performance of such
algorithms. Experiments in various settings demonstrate that our method
significantly improves the convergence speed and performance of the model.
Related papers
- Over-the-Air Fair Federated Learning via Multi-Objective Optimization [52.295563400314094]
We propose an over-the-air fair federated learning algorithm (OTA-FFL) to train fair FL models.
Experiments demonstrate the superiority of OTA-FFL in achieving fairness and robust performance.
arXiv Detail & Related papers (2025-01-06T21:16:51Z) - Guiding The Last Layer in Federated Learning with Pre-Trained Models [18.382057374270143]
Federated Learning (FL) is an emerging paradigm that allows a model to be trained across a number of participants without sharing data.
We show that fitting a classification head using the Nearest Class Means (NCM) can be done exactly and orders of magnitude more efficiently than existing proposals.
arXiv Detail & Related papers (2023-06-06T18:02:02Z) - Towards Compute-Optimal Transfer Learning [82.88829463290041]
We argue that zero-shot structured pruning of pretrained models allows them to increase compute efficiency with minimal reduction in performance.
Our results show that pruning convolutional filters of pretrained models can lead to more than 20% performance improvement in low computational regimes.
arXiv Detail & Related papers (2023-04-25T21:49:09Z) - Gradient Sparsification for Efficient Wireless Federated Learning with
Differential Privacy [25.763777765222358]
Federated learning (FL) enables distributed clients to collaboratively train a machine learning model without sharing raw data with each other.
As the model size grows, the training latency due to limited transmission bandwidth and private information degrades while using differential privacy (DP) protection.
We propose sparsification empowered FL framework wireless channels, in over to improve training efficiency without sacrificing convergence performance.
arXiv Detail & Related papers (2023-04-09T05:21:15Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Accelerating Federated Edge Learning via Topology Optimization [41.830942005165625]
Federated edge learning (FEEL) is envisioned as a promising paradigm to achieve privacy-preserving distributed learning.
It consumes excessive learning time due to the existence of straggler devices.
A novel topology-optimized federated edge learning (TOFEL) scheme is proposed to tackle the heterogeneity issue in federated learning.
arXiv Detail & Related papers (2022-04-01T14:49:55Z) - Improving Federated Relational Data Modeling via Basis Alignment and
Weight Penalty [18.096788806121754]
Federated learning (FL) has attracted increasing attention in recent years.
We present a modified version of the graph neural network algorithm that performs federated modeling over Knowledge Graph (KG)
We propose a novel optimization algorithm, named FedAlign, with 1) optimal transportation (OT) for on-client personalization and 2) weight constraint to speed up the convergence.
Empirical results show that our proposed method outperforms the state-of-the-art FL methods, such as FedAVG and FedProx, with better convergence.
arXiv Detail & Related papers (2020-11-23T12:52:18Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.