Generating Superpixels for High-resolution Images with Decoupled Patch
Calibration
- URL: http://arxiv.org/abs/2108.08607v2
- Date: Mon, 23 Aug 2021 14:28:41 GMT
- Title: Generating Superpixels for High-resolution Images with Decoupled Patch
Calibration
- Authors: Yaxiong Wang and Yunchao Wei and Xueming Qian and Li Zhu and Yi Yang
- Abstract summary: Patch Networks (PCNet) is designed to efficiently and accurately implement high-resolution superpixel segmentation.
DPC takes a local patch from the high-resolution images and dynamically generates a binary mask to impose the network to focus on region boundaries.
In particular, DPC takes a local patch from the high-resolution images and dynamically generates a binary mask to impose the network to focus on region boundaries.
- Score: 82.21559299694555
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Superpixel segmentation has recently seen important progress benefiting from
the advances in differentiable deep learning. However, the very high-resolution
superpixel segmentation still remains challenging due to the expensive memory
and computation cost, making the current advanced superpixel networks fail to
process. In this paper, we devise Patch Calibration Networks (PCNet), aiming to
efficiently and accurately implement high-resolution superpixel segmentation.
PCNet follows the principle of producing high-resolution output from
low-resolution input for saving GPU memory and relieving computation cost. To
recall the fine details destroyed by the down-sampling operation, we propose a
novel Decoupled Patch Calibration (DPC) branch for collaboratively augment the
main superpixel generation branch. In particular, DPC takes a local patch from
the high-resolution images and dynamically generates a binary mask to impose
the network to focus on region boundaries. By sharing the parameters of DPC and
main branches, the fine-detailed knowledge learned from high-resolution patches
will be transferred to help calibrate the destroyed information. To the best of
our knowledge, we make the first attempt to consider the deep-learning-based
superpixel generation for high-resolution cases. To facilitate this research,
we build evaluation benchmarks from two public datasets and one new constructed
one, covering a wide range of diversities from fine-grained human parts to
cityscapes. Extensive experiments demonstrate that our PCNet can not only
perform favorably against the state-of-the-arts in the quantitative results but
also improve the resolution upper bound from 3K to 5K on 1080Ti GPUs.
Related papers
- HRDecoder: High-Resolution Decoder Network for Fundus Image Lesion Segmentation [12.606794661369959]
We propose HRDecoder, a simple High-Resolution Decoder network for fundus lesion segmentation.
It integrates a high-resolution representation learning module to capture fine-grained local features and a high-resolution fusion module to fuse multi-scale predictions.
Our method effectively improves the overall segmentation accuracy of fundus lesions while consuming reasonable memory and computational overhead, and maintaining satisfying inference speed.
arXiv Detail & Related papers (2024-11-06T15:13:31Z) - SaccadeDet: A Novel Dual-Stage Architecture for Rapid and Accurate Detection in Gigapixel Images [50.742420049839474]
'SaccadeDet' is an innovative architecture for gigapixel-level object detection, inspired by the human eye saccadic movement.
Our approach, evaluated on the PANDA dataset, achieves an 8x speed increase over the state-of-the-art methods.
It also demonstrates significant potential in gigapixel-level pathology analysis through its application to Whole Slide Imaging.
arXiv Detail & Related papers (2024-07-25T11:22:54Z) - PTSR: Patch Translator for Image Super-Resolution [16.243363392717434]
We propose a patch translator for image super-resolution (PTSR) to address this problem.
The proposed PTSR is a transformer-based GAN network with no convolution operation.
We introduce a novel patch translator module for regenerating the improved patches utilising multi-head attention.
arXiv Detail & Related papers (2023-10-20T01:45:00Z) - Pixel Adapter: A Graph-Based Post-Processing Approach for Scene Text
Image Super-Resolution [22.60056946339325]
We propose the Pixel Adapter Module (PAM) based on graph attention to address pixel distortion caused by upsampling.
The PAM effectively captures local structural information by allowing each pixel to interact with its neighbors and update features.
We demonstrate that our proposed method generates high-quality super-resolution images, surpassing existing methods in recognition accuracy.
arXiv Detail & Related papers (2023-09-16T08:12:12Z) - Unsupervised Superpixel Generation using Edge-Sparse Embedding [18.92698251515116]
partitioning an image into superpixels based on the similarity of pixels with respect to features can significantly reduce data complexity and improve subsequent image processing tasks.
We propose a non-convolutional image decoder to reduce the expected number of contrasts and enforce smooth, connected edges in the reconstructed image.
We generate edge-sparse pixel embeddings by encoding additional spatial information into the piece-wise smooth activation maps from the decoder's last hidden layer and use a standard clustering algorithm to extract high quality superpixels.
arXiv Detail & Related papers (2022-11-28T15:55:05Z) - Rethinking Resolution in the Context of Efficient Video Recognition [49.957690643214576]
Cross-resolution KD (ResKD) is a simple but effective method to boost recognition accuracy on low-resolution frames.
We extensively demonstrate its effectiveness over state-of-the-art architectures, i.e., 3D-CNNs and Video Transformers.
arXiv Detail & Related papers (2022-09-26T15:50:44Z) - Hybrid Pixel-Unshuffled Network for Lightweight Image Super-Resolution [64.54162195322246]
Convolutional neural network (CNN) has achieved great success on image super-resolution (SR)
Most deep CNN-based SR models take massive computations to obtain high performance.
We propose a novel Hybrid Pixel-Unshuffled Network (HPUN) by introducing an efficient and effective downsampling module into the SR task.
arXiv Detail & Related papers (2022-03-16T20:10:41Z) - Small Lesion Segmentation in Brain MRIs with Subpixel Embedding [105.1223735549524]
We present a method to segment MRI scans of the human brain into ischemic stroke lesion and normal tissues.
We propose a neural network architecture in the form of a standard encoder-decoder where predictions are guided by a spatial expansion embedding network.
arXiv Detail & Related papers (2021-09-18T00:21:17Z) - Implicit Integration of Superpixel Segmentation into Fully Convolutional
Networks [11.696069523681178]
We propose a way to implicitly integrate a superpixel scheme into CNNs.
Our proposed method hierarchically groups pixels at downsampling layers and generates superpixels.
We evaluate our method on several tasks such as semantic segmentation, superpixel segmentation, and monocular depth estimation.
arXiv Detail & Related papers (2021-03-05T02:20:26Z) - Exploiting Raw Images for Real-Scene Super-Resolution [105.18021110372133]
We study the problem of real-scene single image super-resolution to bridge the gap between synthetic data and real captured images.
We propose a method to generate more realistic training data by mimicking the imaging process of digital cameras.
We also develop a two-branch convolutional neural network to exploit the radiance information originally-recorded in raw images.
arXiv Detail & Related papers (2021-02-02T16:10:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.