Temporal Graph Network Embedding with Causal Anonymous Walks
Representations
- URL: http://arxiv.org/abs/2108.08754v1
- Date: Thu, 19 Aug 2021 15:39:52 GMT
- Title: Temporal Graph Network Embedding with Causal Anonymous Walks
Representations
- Authors: Ilya Makarov, Andrey Savchenko, Arseny Korovko, Leonid Sherstyuk,
Nikita Severin, Aleksandr Mikheev, Dmitrii Babaev
- Abstract summary: We propose a novel approach for dynamic network representation learning based on Temporal Graph Network.
For evaluation, we provide a benchmark pipeline for the evaluation of temporal network embeddings.
We show the applicability and superior performance of our model in the real-world downstream graph machine learning task provided by one of the top European banks.
- Score: 54.05212871508062
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many tasks in graph machine learning, such as link prediction and node
classification, are typically solved by using representation learning, in which
each node or edge in the network is encoded via an embedding. Though there
exists a lot of network embeddings for static graphs, the task becomes much
more complicated when the dynamic (i.e. temporal) network is analyzed. In this
paper, we propose a novel approach for dynamic network representation learning
based on Temporal Graph Network by using a highly custom message generating
function by extracting Causal Anonymous Walks. For evaluation, we provide a
benchmark pipeline for the evaluation of temporal network embeddings. This work
provides the first comprehensive comparison framework for temporal network
representation learning in every available setting for graph machine learning
problems involving node classification and link prediction. The proposed model
outperforms state-of-the-art baseline models. The work also justifies the
difference between them based on evaluation in various transductive/inductive
edge/node classification tasks. In addition, we show the applicability and
superior performance of our model in the real-world downstream graph machine
learning task provided by one of the top European banks, involving credit
scoring based on transaction data.
Related papers
- GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
Graph neural networks are increasingly becoming the framework of choice for graph-based machine learning.
We propose a new graph neural network architecture that substitutes classical message passing with an analysis of the local distribution of node features.
arXiv Detail & Related papers (2024-01-17T13:04:23Z) - Graph-Level Embedding for Time-Evolving Graphs [24.194795771873046]
Graph representation learning (also known as network embedding) has been extensively researched with varying levels of granularity.
We present a novel method for temporal graph-level embedding that addresses this gap.
arXiv Detail & Related papers (2023-06-01T01:50:37Z) - Towards Real-Time Temporal Graph Learning [10.647431919265346]
We propose an end-to-end graph learning pipeline that performs temporal graph construction, creates low-dimensional node embeddings, and trains neural network models in an online setting.
arXiv Detail & Related papers (2022-10-08T22:14:31Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - Inferential SIR-GN: Scalable Graph Representation Learning [0.4699313647907615]
Graph representation learning methods generate numerical vector representations for the nodes in a network.
In this work, we propose Inferential SIR-GN, a model which is pre-trained on random graphs, then computes node representations rapidly.
We demonstrate that the model is able to capture node's structural role information, and show excellent performance at node and graph classification tasks, on unseen networks.
arXiv Detail & Related papers (2021-11-08T20:56:37Z) - Graph-Based Neural Network Models with Multiple Self-Supervised
Auxiliary Tasks [79.28094304325116]
Graph Convolutional Networks are among the most promising approaches for capturing relationships among structured data points.
We propose three novel self-supervised auxiliary tasks to train graph-based neural network models in a multi-task fashion.
arXiv Detail & Related papers (2020-11-14T11:09:51Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
Graph embedding is a way to transform and encode the data structure in high dimensional and non-Euclidean feature space.
CensNet is a general graph embedding framework, which embeds both nodes and edges to a latent feature space.
Our approach achieves or matches the state-of-the-art performance in four graph learning tasks.
arXiv Detail & Related papers (2020-10-25T22:39:31Z) - Representation Learning of Graphs Using Graph Convolutional Multilayer
Networks Based on Motifs [17.823543937167848]
mGCMN is a novel framework which utilizes node feature information and the higher order local structure of the graph.
It will greatly improve the learning efficiency of the graph neural network and promote a brand-new learning mode establishment.
arXiv Detail & Related papers (2020-07-31T04:18:20Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
We propose an end-to-end structural temporal Graph Neural Network model for detecting anomalous edges in dynamic graphs.
In particular, we first extract the $h$-hop enclosing subgraph centered on the target edge and propose the node labeling function to identify the role of each node in the subgraph.
Based on the extracted features, we utilize Gated recurrent units (GRUs) to capture the temporal information for anomaly detection.
arXiv Detail & Related papers (2020-05-15T09:17:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.