VAE-CE: Visual Contrastive Explanation using Disentangled VAEs
- URL: http://arxiv.org/abs/2108.09159v1
- Date: Fri, 20 Aug 2021 13:15:24 GMT
- Title: VAE-CE: Visual Contrastive Explanation using Disentangled VAEs
- Authors: Yoeri Poels, Vlado Menkovski
- Abstract summary: Variational Autoencoder-based Contrastive Explanation (VAE-CE)
We build the model using a disentangled VAE, extended with a new supervised method for disentangling individual dimensions.
An analysis on synthetic data and MNIST shows that the approaches to both disentanglement and explanation provide benefits over other methods.
- Score: 3.5027291542274357
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The goal of a classification model is to assign the correct labels to data.
In most cases, this data is not fully described by the given set of labels.
Often a rich set of meaningful concepts exist in the domain that can much more
precisely describe each datapoint. Such concepts can also be highly useful for
interpreting the model's classifications. In this paper we propose a model,
denoted as Variational Autoencoder-based Contrastive Explanation (VAE-CE), that
represents data with high-level concepts and uses this representation for both
classification and generating explanations. The explanations are produced in a
contrastive manner, conveying why a datapoint is assigned to one class rather
than an alternative class. An explanation is specified as a set of
transformations of the input datapoint, with each step depicting a concept
changing towards the contrastive class. We build the model using a disentangled
VAE, extended with a new supervised method for disentangling individual
dimensions. An analysis on synthetic data and MNIST shows that the approaches
to both disentanglement and explanation provide benefits over other methods.
Related papers
- Accurate Explanation Model for Image Classifiers using Class Association Embedding [5.378105759529487]
We propose a generative explanation model that combines the advantages of global and local knowledge.
Class association embedding (CAE) encodes each sample into a pair of separated class-associated and individual codes.
Building-block coherency feature extraction algorithm is proposed that efficiently separates class-associated features from individual ones.
arXiv Detail & Related papers (2024-06-12T07:41:00Z) - Structure Your Data: Towards Semantic Graph Counterfactuals [1.8817715864806608]
Counterfactual explanations (CEs) based on concepts are explanations that consider alternative scenarios to understand which high-level semantic features contributed to model predictions.
In this work, we propose CEs based on the semantic graphs accompanying input data to achieve more descriptive, accurate, and human-aligned explanations.
arXiv Detail & Related papers (2024-03-11T08:40:37Z) - Text Descriptions are Compressive and Invariant Representations for
Visual Learning [63.3464863723631]
We show that an alternative approach, in line with humans' understanding of multiple visual features per class, can provide compelling performance in the robust few-shot learning setting.
In particular, we introduce a novel method, textit SLR-AVD (Sparse Logistic Regression using Augmented Visual Descriptors).
This method first automatically generates multiple visual descriptions of each class via a large language model (LLM), then uses a VLM to translate these descriptions to a set of visual feature embeddings of each image, and finally uses sparse logistic regression to select a relevant subset of these features to classify
arXiv Detail & Related papers (2023-07-10T03:06:45Z) - CLIMAX: An exploration of Classifier-Based Contrastive Explanations [5.381004207943597]
We propose a novel post-hoc model XAI technique that provides contrastive explanations justifying the classification of a black box.
Our method, which we refer to as CLIMAX, is based on local classifiers.
We show that we achieve better consistency as compared to baselines such as LIME, BayLIME, and SLIME.
arXiv Detail & Related papers (2023-07-02T22:52:58Z) - Streamlining models with explanations in the learning loop [0.0]
Several explainable AI methods allow a Machine Learning user to get insights on the classification process of a black-box model.
We exploit this information to design a feature engineering phase, where we combine explanations with feature values.
arXiv Detail & Related papers (2023-02-15T16:08:32Z) - Measuring the Interpretability of Unsupervised Representations via
Quantized Reverse Probing [97.70862116338554]
We investigate the problem of measuring interpretability of self-supervised representations.
We formulate the latter as estimating the mutual information between the representation and a space of manually labelled concepts.
We use our method to evaluate a large number of self-supervised representations, ranking them by interpretability.
arXiv Detail & Related papers (2022-09-07T16:18:50Z) - Resolving label uncertainty with implicit posterior models [71.62113762278963]
We propose a method for jointly inferring labels across a collection of data samples.
By implicitly assuming the existence of a generative model for which a differentiable predictor is the posterior, we derive a training objective that allows learning under weak beliefs.
arXiv Detail & Related papers (2022-02-28T18:09:44Z) - Multivariate Data Explanation by Jumping Emerging Patterns Visualization [78.6363825307044]
We present VAX (multiVariate dAta eXplanation), a new VA method to support the identification and visual interpretation of patterns in multivariate data sets.
Unlike the existing similar approaches, VAX uses the concept of Jumping Emerging Patterns to identify and aggregate several diversified patterns, producing explanations through logic combinations of data variables.
arXiv Detail & Related papers (2021-06-21T13:49:44Z) - Contrastive Explanations for Model Interpretability [77.92370750072831]
We propose a methodology to produce contrastive explanations for classification models.
Our method is based on projecting model representation to a latent space.
Our findings shed light on the ability of label-contrastive explanations to provide a more accurate and finer-grained interpretability of a model's decision.
arXiv Detail & Related papers (2021-03-02T00:36:45Z) - Explainable Deep Classification Models for Domain Generalization [94.43131722655617]
Explanations are defined as regions of visual evidence upon which a deep classification network makes a decision.
Our training strategy enforces a periodic saliency-based feedback to encourage the model to focus on the image regions that directly correspond to the ground-truth object.
arXiv Detail & Related papers (2020-03-13T22:22:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.