imGHUM: Implicit Generative Models of 3D Human Shape and Articulated
Pose
- URL: http://arxiv.org/abs/2108.10842v1
- Date: Tue, 24 Aug 2021 17:08:28 GMT
- Title: imGHUM: Implicit Generative Models of 3D Human Shape and Articulated
Pose
- Authors: Thiemo Alldieck, Hongyi Xu, Cristian Sminchisescu
- Abstract summary: We present imGHUM, the first holistic generative model of 3D human shape and articulated pose.
We model the full human body implicitly as a function zero-level-set and without the use of an explicit template mesh.
- Score: 42.4185273307021
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present imGHUM, the first holistic generative model of 3D human shape and
articulated pose, represented as a signed distance function. In contrast to
prior work, we model the full human body implicitly as a function
zero-level-set and without the use of an explicit template mesh. We propose a
novel network architecture and a learning paradigm, which make it possible to
learn a detailed implicit generative model of human pose, shape, and semantics,
on par with state-of-the-art mesh-based models. Our model features desired
detail for human models, such as articulated pose including hand motion and
facial expressions, a broad spectrum of shape variations, and can be queried at
arbitrary resolutions and spatial locations. Additionally, our model has
attached spatial semantics making it straightforward to establish
correspondences between different shape instances, thus enabling applications
that are difficult to tackle using classical implicit representations. In
extensive experiments, we demonstrate the model accuracy and its applicability
to current research problems.
Related papers
- Champ: Controllable and Consistent Human Image Animation with 3D Parametric Guidance [25.346255905155424]
We introduce a methodology for human image animation by leveraging a 3D human parametric model within a latent diffusion framework.
By representing the 3D human parametric model as the motion guidance, we can perform parametric shape alignment of the human body between the reference image and the source video motion.
Our approach also exhibits superior generalization capabilities on the proposed in-the-wild dataset.
arXiv Detail & Related papers (2024-03-21T18:52:58Z) - LatentHuman: Shape-and-Pose Disentangled Latent Representation for Human
Bodies [78.17425779503047]
We propose a novel neural implicit representation for the human body.
It is fully differentiable and optimizable with disentangled shape and pose latent spaces.
Our model can be trained and fine-tuned directly on non-watertight raw data with well-designed losses.
arXiv Detail & Related papers (2021-11-30T04:10:57Z) - Identity-Disentangled Neural Deformation Model for Dynamic Meshes [8.826835863410109]
We learn a neural deformation model that disentangles identity-induced shape variations from pose-dependent deformations using implicit neural functions.
We propose two methods to integrate global pose alignment with our neural deformation model.
Our method also outperforms traditional skeleton-driven models in reconstructing surface details such as palm prints or tendons without limitations from a fixed template.
arXiv Detail & Related papers (2021-09-30T17:43:06Z) - Probabilistic Modeling for Human Mesh Recovery [73.11532990173441]
This paper focuses on the problem of 3D human reconstruction from 2D evidence.
We recast the problem as learning a mapping from the input to a distribution of plausible 3D poses.
arXiv Detail & Related papers (2021-08-26T17:55:11Z) - Neural-GIF: Neural Generalized Implicit Functions for Animating People
in Clothing [49.32522765356914]
We learn to animate people in clothing as a function of the body pose.
We learn to map every point in the space to a canonical space, where a learned deformation field is applied to model non-rigid effects.
Neural-GIF can be trained on raw 3D scans and reconstructs detailed complex surface geometry and deformations.
arXiv Detail & Related papers (2021-08-19T17:25:16Z) - Combining Implicit Function Learning and Parametric Models for 3D Human
Reconstruction [123.62341095156611]
Implicit functions represented as deep learning approximations are powerful for reconstructing 3D surfaces.
Such features are essential in building flexible models for both computer graphics and computer vision.
We present methodology that combines detail-rich implicit functions and parametric representations.
arXiv Detail & Related papers (2020-07-22T13:46:14Z) - PaMIR: Parametric Model-Conditioned Implicit Representation for
Image-based Human Reconstruction [67.08350202974434]
We propose Parametric Model-Conditioned Implicit Representation (PaMIR), which combines the parametric body model with the free-form deep implicit function.
We show that our method achieves state-of-the-art performance for image-based 3D human reconstruction in the cases of challenging poses and clothing types.
arXiv Detail & Related papers (2020-07-08T02:26:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.