Unified generation and fast emission of arbitrary single-photon
multimode $W$ states
- URL: http://arxiv.org/abs/2108.11185v3
- Date: Sun, 12 Sep 2021 13:02:30 GMT
- Title: Unified generation and fast emission of arbitrary single-photon
multimode $W$ states
- Authors: Juncong Zheng, Jie Peng, Pinghua Tang, Fei Li, and Na Tan
- Abstract summary: We propose a scheme to generate arbitrary single-photon multimode $W$ states in circuit QED.
We could not only generate $W$ states inside resonators but also release them into transmission lines on demand.
- Score: 15.154573548076446
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a unified and deterministic scheme to generate arbitrary
single-photon multimode $W$ states in circuit QED. A three-level system
(qutrit) is driven by a pump-laser pulse and coupled to $N$ spatially separated
resonators. The coupling strength for each spatial mode $g_i$ totally decide
the generated single-photon N-mode $W$ state $\vert W_N
\rangle=\frac{1}{A}\sum_{i=1}^N g_i|0_1 0_2 \cdots 1_i 0_{i+1}\cdots
0_N\rangle$, so arbitrary $\vert W_N \rangle$ can be generated just by tuning
$g_i$. We could not only generate $W$ states inside resonators but also release
them into transmission lines on demand. The time and fidelity for generating
(or emitting) $\vert W_N \rangle$ can both be the same for arbitrary $N$.
Remarkably, $\vert W_N\rangle$ can be emitted with probability reaching
$98.9\%$ in $20-50$ ns depending on parameters, comparable to the recently
reported fastest two-qubit gate ($30-45$ ns). Finally, the time evolution
process is convenient to control since only the pump pulse is time-dependent.
Related papers
- Spacetime-Efficient Low-Depth Quantum State Preparation with
Applications [93.56766264306764]
We show that a novel deterministic method for preparing arbitrary quantum states requires fewer quantum resources than previous methods.
We highlight several applications where this ability would be useful, including quantum machine learning, Hamiltonian simulation, and solving linear systems of equations.
arXiv Detail & Related papers (2023-03-03T18:23:20Z) - Systematics of quasi-Hermitian representations of non-Hermitian quantum
models [0.0]
This paper introduces and describes a set of constructive returns of the description to one of the correct and eligible physical Hilbert spaces $cal R_N(0)$.
In the extreme of the theory the construction is currently well known and involves solely the inner product metric $Theta=Theta(H)$.
At $j=N$ the inner-product metric remains trivial and only the Hamiltonian must be Hermitized, $H to mathfrakh = Omega,H,Omega-1=mathfrak
arXiv Detail & Related papers (2022-12-07T20:10:58Z) - Reward-Mixing MDPs with a Few Latent Contexts are Learnable [75.17357040707347]
We consider episodic reinforcement learning in reward-mixing Markov decision processes (RMMDPs)
Our goal is to learn a near-optimal policy that nearly maximizes the $H$ time-step cumulative rewards in such a model.
arXiv Detail & Related papers (2022-10-05T22:52:00Z) - Low-Stabilizer-Complexity Quantum States Are Not Pseudorandom [1.0323063834827415]
We show that quantum states with "low stabilizer complexity" can be efficiently distinguished from Haar-random.
We prove that $omega(log(n))$ $T$-gates are necessary for any Clifford+$T$ circuit to prepare computationally pseudorandom quantum states.
arXiv Detail & Related papers (2022-09-29T03:34:03Z) - The Approximate Degree of DNF and CNF Formulas [95.94432031144716]
For every $delta>0,$ we construct CNF and formulas of size with approximate degree $Omega(n1-delta),$ essentially matching the trivial upper bound of $n.
We show that for every $delta>0$, these models require $Omega(n1-delta)$, $Omega(n/4kk2)1-delta$, and $Omega(n/4kk2)1-delta$, respectively.
arXiv Detail & Related papers (2022-09-04T10:01:39Z) - Ultrafast adiabatic passages in ultrastrongly coupled light-matter systems [5.574081332554501]
We find a linear ultrafast adiabatic passage through $vert psirangle$ to fast generate arbitrary single-photon $M$-mode $W$ states.
This work reveals the existence of linear ultrafast adiabatic passages in light-matter systems.
arXiv Detail & Related papers (2022-07-02T08:36:02Z) - An Optimal Separation of Randomized and Quantum Query Complexity [67.19751155411075]
We prove that for every decision tree, the absolute values of the Fourier coefficients of a given order $ellsqrtbinomdell (1+log n)ell-1,$ sum to at most $cellsqrtbinomdell (1+log n)ell-1,$ where $n$ is the number of variables, $d$ is the tree depth, and $c>0$ is an absolute constant.
arXiv Detail & Related papers (2020-08-24T06:50:57Z) - Spoofing Linear Cross-Entropy Benchmarking in Shallow Quantum Circuits [8.401078947103475]
Google's noisy quantum simulation of a 53 qubit circuit $C$ achieved a fidelity value of $(2.24pm0.21)times10-3$.
Our results can be considered as an evidence that fooling the linear XEB test might be easier than achieving a full simulation of quantum circuit.
arXiv Detail & Related papers (2020-05-05T18:01:48Z) - Exponentially faster implementations of Select(H) for fermionic
Hamiltonians [0.0]
We present a framework for constructing quantum circuits that implement the multiply-controlled unitary $textSelect(H) equiv sum_ell.
$textSelect(H)$ is one of the main subroutines of several quantum algorithms.
arXiv Detail & Related papers (2020-04-08T18:00:04Z) - On the Complexity of Minimizing Convex Finite Sums Without Using the
Indices of the Individual Functions [62.01594253618911]
We exploit the finite noise structure of finite sums to derive a matching $O(n2)$-upper bound under the global oracle model.
Following a similar approach, we propose a novel adaptation of SVRG which is both emphcompatible with oracles, and achieves complexity bounds of $tildeO(n2+nsqrtL/mu)log (1/epsilon)$ and $O(nsqrtL/epsilon)$, for $mu>0$ and $mu=0$
arXiv Detail & Related papers (2020-02-09T03:39:46Z) - Curse of Dimensionality on Randomized Smoothing for Certifiable
Robustness [151.67113334248464]
We show that extending the smoothing technique to defend against other attack models can be challenging.
We present experimental results on CIFAR to validate our theory.
arXiv Detail & Related papers (2020-02-08T22:02:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.