The Interplay Between Implicit Bias and Benign Overfitting in Two-Layer
Linear Networks
- URL: http://arxiv.org/abs/2108.11489v1
- Date: Wed, 25 Aug 2021 22:01:01 GMT
- Title: The Interplay Between Implicit Bias and Benign Overfitting in Two-Layer
Linear Networks
- Authors: Niladri S. Chatterji, Philip M. Long, Peter L. Bartlett
- Abstract summary: neural network models that perfectly fit noisy data can generalize well to unseen test data.
We consider interpolating two-layer linear neural networks trained with gradient flow on the squared loss and derive bounds on the excess risk.
- Score: 51.1848572349154
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent success of neural network models has shone light on a rather
surprising statistical phenomenon: statistical models that perfectly fit noisy
data can generalize well to unseen test data. Understanding this phenomenon of
$\textit{benign overfitting}$ has attracted intense theoretical and empirical
study. In this paper, we consider interpolating two-layer linear neural
networks trained with gradient flow on the squared loss and derive bounds on
the excess risk when the covariates satisfy sub-Gaussianity and
anti-concentration properties, and the noise is independent and sub-Gaussian.
By leveraging recent results that characterize the implicit bias of this
estimator, our bounds emphasize the role of both the quality of the
initialization as well as the properties of the data covariance matrix in
achieving low excess risk.
Related papers
- The Surprising Harmfulness of Benign Overfitting for Adversarial
Robustness [13.120373493503772]
We prove a surprising result that even if the ground truth itself is robust to adversarial examples, the benignly overfitted model is benign in terms of the standard'' out-of-sample risk objective.
Our finding provides theoretical insights into the puzzling phenomenon observed in practice, where the true target function (e.g., human) is robust against adverasrial attack, while beginly overfitted neural networks lead to models that are not robust.
arXiv Detail & Related papers (2024-01-19T15:40:46Z) - Neural Network Approximation for Pessimistic Offline Reinforcement
Learning [17.756108291816908]
We present a non-asymptotic estimation error of pessimistic offline RL using general neural network approximation.
Our result shows that the estimation error consists of two parts: the first converges to zero at a desired rate on the sample size with partially controllable concentrability, and the second becomes negligible if the residual constraint is tight.
arXiv Detail & Related papers (2023-12-19T05:17:27Z) - A U-turn on Double Descent: Rethinking Parameter Counting in Statistical
Learning [68.76846801719095]
We show that double descent appears exactly when and where it occurs, and that its location is not inherently tied to the threshold p=n.
This provides a resolution to tensions between double descent and statistical intuition.
arXiv Detail & Related papers (2023-10-29T12:05:39Z) - Learning Linear Causal Representations from Interventions under General
Nonlinear Mixing [52.66151568785088]
We prove strong identifiability results given unknown single-node interventions without access to the intervention targets.
This is the first instance of causal identifiability from non-paired interventions for deep neural network embeddings.
arXiv Detail & Related papers (2023-06-04T02:32:12Z) - Phenomenology of Double Descent in Finite-Width Neural Networks [29.119232922018732]
Double descent delineates the behaviour of models depending on the regime they belong to.
We use influence functions to derive suitable expressions of the population loss and its lower bound.
Building on our analysis, we investigate how the loss function affects double descent.
arXiv Detail & Related papers (2022-03-14T17:39:49Z) - Benign Overfitting without Linearity: Neural Network Classifiers Trained
by Gradient Descent for Noisy Linear Data [44.431266188350655]
We consider the generalization error of two-layer neural networks trained to generalize by gradient descent.
We show that neural networks exhibit benign overfitting: they can be driven to zero training error, perfectly fitting any noisy training labels, and simultaneously achieve minimax optimal test error.
In contrast to previous work on benign overfitting that require linear or kernel-based predictors, our analysis holds in a setting where both the model and learning dynamics are fundamentally nonlinear.
arXiv Detail & Related papers (2022-02-11T23:04:00Z) - Fluctuations, Bias, Variance & Ensemble of Learners: Exact Asymptotics
for Convex Losses in High-Dimension [25.711297863946193]
We develop a theory for the study of fluctuations in an ensemble of generalised linear models trained on different, but correlated, features.
We provide a complete description of the joint distribution of the empirical risk minimiser for generic convex loss and regularisation in the high-dimensional limit.
arXiv Detail & Related papers (2022-01-31T17:44:58Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
Modern machine learning models often employ a huge number of parameters and are typically optimized to have zero training loss.
We examine how these benign overfitting phenomena occur in a two-layer neural network setting.
We show that it is possible for the two-layer ReLU network interpolator to achieve a near minimax-optimal learning rate.
arXiv Detail & Related papers (2021-06-06T19:08:53Z) - A Bayesian Perspective on Training Speed and Model Selection [51.15664724311443]
We show that a measure of a model's training speed can be used to estimate its marginal likelihood.
We verify our results in model selection tasks for linear models and for the infinite-width limit of deep neural networks.
Our results suggest a promising new direction towards explaining why neural networks trained with gradient descent are biased towards functions that generalize well.
arXiv Detail & Related papers (2020-10-27T17:56:14Z) - Distribution Approximation and Statistical Estimation Guarantees of
Generative Adversarial Networks [82.61546580149427]
Generative Adversarial Networks (GANs) have achieved a great success in unsupervised learning.
This paper provides approximation and statistical guarantees of GANs for the estimation of data distributions with densities in a H"older space.
arXiv Detail & Related papers (2020-02-10T16:47:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.