Identity-aware Graph Memory Network for Action Detection
- URL: http://arxiv.org/abs/2108.11559v1
- Date: Thu, 26 Aug 2021 02:34:55 GMT
- Title: Identity-aware Graph Memory Network for Action Detection
- Authors: Jingcheng Ni, Jie Qin, Di Huang
- Abstract summary: We explicitly highlight the identity information of the actors in terms of both long-term and short-term context through a graph memory network.
Specifically, we propose the hierarchical graph neural network (IGNN) to comprehensively conduct long-term relation modeling.
We develop a dual attention module (DAM) to generate identity-aware constraint to reduce the influence of interference by the actors of different identities.
- Score: 37.65846189707054
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Action detection plays an important role in high-level video understanding
and media interpretation. Many existing studies fulfill this spatio-temporal
localization by modeling the context, capturing the relationship of actors,
objects, and scenes conveyed in the video. However, they often universally
treat all the actors without considering the consistency and distinctness
between individuals, leaving much room for improvement. In this paper, we
explicitly highlight the identity information of the actors in terms of both
long-term and short-term context through a graph memory network, namely
identity-aware graph memory network (IGMN). Specifically, we propose the
hierarchical graph neural network (HGNN) to comprehensively conduct long-term
relation modeling within the same identity as well as between different ones.
Regarding short-term context, we develop a dual attention module (DAM) to
generate identity-aware constraint to reduce the influence of interference by
the actors of different identities. Extensive experiments on the challenging
AVA dataset demonstrate the effectiveness of our method, which achieves
state-of-the-art results on AVA v2.1 and v2.2.
Related papers
- VrdONE: One-stage Video Visual Relation Detection [30.983521962897477]
Video Visual Relation Detection (VidVRD) focuses on understanding how entities over time and space in videos.
Traditional methods for VidVRD, challenged by its complexity, typically split the task into two parts: one for identifying what relation are present and another for determining their temporal boundaries.
We propose VrdONE, a streamlined yet efficacious one-stage model for VidVRD.
arXiv Detail & Related papers (2024-08-18T08:38:20Z) - Video-based Person Re-identification with Long Short-Term Representation
Learning [101.62570747820541]
Video-based person Re-Identification (V-ReID) aims to retrieve specific persons from raw videos captured by non-overlapped cameras.
We propose a novel deep learning framework named Long Short-Term Representation Learning (LSTRL) for effective V-ReID.
arXiv Detail & Related papers (2023-08-07T16:22:47Z) - DOAD: Decoupled One Stage Action Detection Network [77.14883592642782]
Localizing people and recognizing their actions from videos is a challenging task towards high-level video understanding.
Existing methods are mostly two-stage based, with one stage for person bounding box generation and the other stage for action recognition.
We present a decoupled one-stage network dubbed DOAD, to improve the efficiency for-temporal action detection.
arXiv Detail & Related papers (2023-04-01T08:06:43Z) - Multi-Stage Spatio-Temporal Aggregation Transformer for Video Person
Re-identification [78.08536797239893]
We propose a novel Multi-Stage Spatial-Temporal Aggregation Transformer (MSTAT) with two novel designed proxy embedding modules.
MSTAT consists of three stages to encode the attribute-associated, the identity-associated, and the attribute-identity-associated information from the video clips.
We show that MSTAT can achieve state-of-the-art accuracies on various standard benchmarks.
arXiv Detail & Related papers (2023-01-02T05:17:31Z) - Feature Disentanglement Learning with Switching and Aggregation for
Video-based Person Re-Identification [9.068045610800667]
In video person re-identification (Re-ID), the network must consistently extract features of the target person from successive frames.
Existing methods tend to focus only on how to use temporal information, which often leads to networks being fooled by similar appearances and same backgrounds.
We propose a Disentanglement and Switching and Aggregation Network (DSANet), which segregates the features representing identity and features based on camera characteristics, and pays more attention to ID information.
arXiv Detail & Related papers (2022-12-16T04:27:56Z) - Self-Regulated Learning for Egocentric Video Activity Anticipation [147.9783215348252]
Self-Regulated Learning (SRL) aims to regulate the intermediate representation consecutively to produce representation that emphasizes the novel information in the frame of the current time-stamp.
SRL sharply outperforms existing state-of-the-art in most cases on two egocentric video datasets and two third-person video datasets.
arXiv Detail & Related papers (2021-11-23T03:29:18Z) - Coarse Temporal Attention Network (CTA-Net) for Driver's Activity
Recognition [14.07119502083967]
Driver's activities are different since they are executed by the same subject with similar body parts movements, resulting in subtle changes.
Our model is named Coarse Temporal Attention Network (CTA-Net), in which coarse temporal branches are introduced in a trainable glimpse.
The model then uses an innovative attention mechanism to generate high-level action specific contextual information for activity recognition.
arXiv Detail & Related papers (2021-01-17T10:15:37Z) - Multi-Granularity Reference-Aided Attentive Feature Aggregation for
Video-based Person Re-identification [98.7585431239291]
Video-based person re-identification aims at matching the same person across video clips.
In this paper, we propose an attentive feature aggregation module, namely Multi-Granularity Reference-Attentive Feature aggregation module MG-RAFA.
Our framework achieves the state-of-the-art ablation performance on three benchmark datasets.
arXiv Detail & Related papers (2020-03-27T03:49:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.