NeighCNN: A CNN based SAR Speckle Reduction using Feature preserving
Loss Function
- URL: http://arxiv.org/abs/2108.11573v1
- Date: Thu, 26 Aug 2021 04:20:07 GMT
- Title: NeighCNN: A CNN based SAR Speckle Reduction using Feature preserving
Loss Function
- Authors: Praveen Ravirathinam, Darshan Agrawal, J. Jennifer Ranjani
- Abstract summary: NeighCNN is a deep learning-based speckle reduction algorithm that handles multiplicative noise.
Various synthetic, as well as real SAR images, are used for testing the NeighCNN architecture.
- Score: 1.7188280334580193
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Coherent imaging systems like synthetic aperture radar are susceptible to
multiplicative noise that makes applications like automatic target recognition
challenging. In this paper, NeighCNN, a deep learning-based speckle reduction
algorithm that handles multiplicative noise with relatively simple
convolutional neural network architecture, is proposed. We have designed a loss
function which is an unique combination of weighted sum of Euclidean,
neighbourhood, and perceptual loss for training the deep network. Euclidean and
neighbourhood losses take pixel-level information into account, whereas
perceptual loss considers high-level semantic features between two images.
Various synthetic, as well as real SAR images, are used for testing the
NeighCNN architecture, and the results verify the noise removal and edge
preservation abilities of the proposed architecture. Performance metrics like
peak-signal-to-noise ratio, structural similarity index, and universal image
quality index are used for evaluating the efficiency of the proposed
architecture on synthetic images.
Related papers
- DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments.
Previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features.
Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network's gradient space.
arXiv Detail & Related papers (2023-12-12T06:07:21Z) - ATASI-Net: An Efficient Sparse Reconstruction Network for Tomographic
SAR Imaging with Adaptive Threshold [13.379416816598873]
This paper proposes a novel efficient sparse unfolding network based on the analytic learned iterative shrinkage thresholding algorithm (ALISTA)
The weight matrix in each layer of ATASI-Net is pre-computed as the solution of an off-line optimization problem.
In addition, adaptive threshold is introduced for each azimuth-range pixel, enabling the threshold shrinkage to be not only layer-varied but also element-wise.
arXiv Detail & Related papers (2022-11-30T09:55:45Z) - Pushing the Efficiency Limit Using Structured Sparse Convolutions [82.31130122200578]
We propose Structured Sparse Convolution (SSC), which leverages the inherent structure in images to reduce the parameters in the convolutional filter.
We show that SSC is a generalization of commonly used layers (depthwise, groupwise and pointwise convolution) in efficient architectures''
Architectures based on SSC achieve state-of-the-art performance compared to baselines on CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet classification benchmarks.
arXiv Detail & Related papers (2022-10-23T18:37:22Z) - Practical Blind Image Denoising via Swin-Conv-UNet and Data Synthesis [148.16279746287452]
We propose a swin-conv block to incorporate the local modeling ability of residual convolutional layer and non-local modeling ability of swin transformer block.
For the training data synthesis, we design a practical noise degradation model which takes into consideration different kinds of noise.
Experiments on AGWN removal and real image denoising demonstrate that the new network architecture design achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-03-24T18:11:31Z) - New SAR target recognition based on YOLO and very deep multi-canonical
correlation analysis [0.1503974529275767]
This paper proposes a robust feature extraction method for SAR image target classification by adaptively fusing effective features from different CNN layers.
Experiments on the MSTAR dataset demonstrate that the proposed method outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2021-10-28T18:10:26Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
We present a learning-based solution for restoring images suffering from spatially-varying degradations.
We propose SPAIR, a network design that harnesses distortion-localization information and dynamically adjusts to difficult regions in the image.
arXiv Detail & Related papers (2021-08-19T11:02:25Z) - (ASNA) An Attention-based Siamese-Difference Neural Network with
Surrogate Ranking Loss function for Perceptual Image Quality Assessment [0.0]
Deep convolutional neural networks (DCNN) that leverage the adversarial training framework for image restoration and enhancement have significantly improved the processed images' sharpness.
It is necessary to develop a quantitative metric to reflect their performances, which is well-aligned with the perceived quality of an image.
This paper has proposed a convolutional neural network using an extension architecture of the traditional Siamese network.
arXiv Detail & Related papers (2021-05-06T09:04:21Z) - Asymmetric CNN for image super-resolution [102.96131810686231]
Deep convolutional neural networks (CNNs) have been widely applied for low-level vision over the past five years.
We propose an asymmetric CNN (ACNet) comprising an asymmetric block (AB), a mem?ory enhancement block (MEB) and a high-frequency feature enhancement block (HFFEB) for image super-resolution.
Our ACNet can effectively address single image super-resolution (SISR), blind SISR and blind SISR of blind noise problems.
arXiv Detail & Related papers (2021-03-25T07:10:46Z) - On the Impact of Lossy Image and Video Compression on the Performance of
Deep Convolutional Neural Network Architectures [17.349420462716886]
This study investigates the impact of commonplace image and video compression techniques on the performance of deep learning architectures.
We examine the impact on performance across five discrete tasks: human pose estimation, semantic segmentation, object detection, action recognition, and monocular depth estimation.
Results show a non-linear and non-uniform relationship between network performance and the level of lossy compression applied.
arXiv Detail & Related papers (2020-07-28T15:37:37Z) - Attention Based Real Image Restoration [48.933507352496726]
Deep convolutional neural networks perform better on images containing synthetic degradations.
This paper proposes a novel single-stage blind real image restoration network (R$2$Net)
arXiv Detail & Related papers (2020-04-26T04:21:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.