Evaluating the Robustness of Neural Language Models to Input
Perturbations
- URL: http://arxiv.org/abs/2108.12237v1
- Date: Fri, 27 Aug 2021 12:31:17 GMT
- Title: Evaluating the Robustness of Neural Language Models to Input
Perturbations
- Authors: Milad Moradi, Matthias Samwald
- Abstract summary: In this study, we design and implement various types of character-level and word-level perturbation methods to simulate noisy input texts.
We investigate the ability of high-performance language models such as BERT, XLNet, RoBERTa, and ELMo in handling different types of input perturbations.
The results suggest that language models are sensitive to input perturbations and their performance can decrease even when small changes are introduced.
- Score: 7.064032374579076
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-performance neural language models have obtained state-of-the-art
results on a wide range of Natural Language Processing (NLP) tasks. However,
results for common benchmark datasets often do not reflect model reliability
and robustness when applied to noisy, real-world data. In this study, we design
and implement various types of character-level and word-level perturbation
methods to simulate realistic scenarios in which input texts may be slightly
noisy or different from the data distribution on which NLP systems were
trained. Conducting comprehensive experiments on different NLP tasks, we
investigate the ability of high-performance language models such as BERT,
XLNet, RoBERTa, and ELMo in handling different types of input perturbations.
The results suggest that language models are sensitive to input perturbations
and their performance can decrease even when small changes are introduced. We
highlight that models need to be further improved and that current benchmarks
are not reflecting model robustness well. We argue that evaluations on
perturbed inputs should routinely complement widely-used benchmarks in order to
yield a more realistic understanding of NLP systems robustness.
Related papers
- How Hard is this Test Set? NLI Characterization by Exploiting Training Dynamics [49.9329723199239]
We propose a method for the automated creation of a challenging test set without relying on the manual construction of artificial and unrealistic examples.
We categorize the test set of popular NLI datasets into three difficulty levels by leveraging methods that exploit training dynamics.
When our characterization method is applied to the training set, models trained with only a fraction of the data achieve comparable performance to those trained on the full dataset.
arXiv Detail & Related papers (2024-10-04T13:39:21Z) - Enhancing adversarial robustness in Natural Language Inference using explanations [41.46494686136601]
We cast the spotlight on the underexplored task of Natural Language Inference (NLI)
We validate the usage of natural language explanation as a model-agnostic defence strategy through extensive experimentation.
We research the correlation of widely used language generation metrics with human perception, in order for them to serve as a proxy towards robust NLI models.
arXiv Detail & Related papers (2024-09-11T17:09:49Z) - COPAL: Continual Pruning in Large Language Generative Models [23.747878534962663]
COPAL is an algorithm developed for pruning large language generative models under a continual model adaptation setting.
Our empirical evaluation on a various size of LLMs show that COPAL outperforms baseline models.
arXiv Detail & Related papers (2024-05-02T18:24:41Z) - Revisit Input Perturbation Problems for LLMs: A Unified Robustness
Evaluation Framework for Noisy Slot Filling Task [18.623619585980688]
We propose a unified robustness evaluation framework based on the slot-filling task to evaluate the dialogue understanding capability of large language models.
Specifically, we construct a input perturbation evaluation dataset, Noise-LLM, which contains five types of single perturbation and four types of mixed perturbation data.
Our aim is to assess how well various robustness methods of LLMs perform in real-world noisy scenarios.
arXiv Detail & Related papers (2023-10-10T10:22:05Z) - Tailoring Language Generation Models under Total Variation Distance [55.89964205594829]
The standard paradigm of neural language generation adopts maximum likelihood estimation (MLE) as the optimizing method.
We develop practical bounds to apply it to language generation.
We introduce the TaiLr objective that balances the tradeoff of estimating TVD.
arXiv Detail & Related papers (2023-02-26T16:32:52Z) - Can NMT Understand Me? Towards Perturbation-based Evaluation of NMT
Models for Code Generation [1.7616042687330642]
A key step to validate the robustness of the NMT models is to evaluate their performance on adversarial inputs.
In this work, we identify a set of perturbations and metrics tailored for the robustness assessment of such models.
We present a preliminary experimental evaluation, showing what type of perturbations affect the model the most.
arXiv Detail & Related papers (2022-03-29T08:01:39Z) - Distributionally Robust Recurrent Decoders with Random Network
Distillation [93.10261573696788]
We propose a method based on OOD detection with Random Network Distillation to allow an autoregressive language model to disregard OOD context during inference.
We apply our method to a GRU architecture, demonstrating improvements on multiple language modeling (LM) datasets.
arXiv Detail & Related papers (2021-10-25T19:26:29Z) - Understanding Model Robustness to User-generated Noisy Texts [2.958690090551675]
In NLP, model performance often deteriorates with naturally occurring noise, such as spelling errors.
We propose to model the errors statistically from grammatical-error-correction corpora.
arXiv Detail & Related papers (2021-10-14T14:54:52Z) - NoiER: An Approach for Training more Reliable Fine-TunedDownstream Task
Models [54.184609286094044]
We propose noise entropy regularisation (NoiER) as an efficient learning paradigm that solves the problem without auxiliary models and additional data.
The proposed approach improved traditional OOD detection evaluation metrics by 55% on average compared to the original fine-tuned models.
arXiv Detail & Related papers (2021-08-29T06:58:28Z) - Bridging the Gap Between Clean Data Training and Real-World Inference
for Spoken Language Understanding [76.89426311082927]
Existing models are trained on clean data, which causes a textitgap between clean data training and real-world inference.
We propose a method from the perspective of domain adaptation, by which both high- and low-quality samples are embedding into similar vector space.
Experiments on the widely-used dataset, Snips, and large scale in-house dataset (10 million training examples) demonstrate that this method not only outperforms the baseline models on real-world (noisy) corpus but also enhances the robustness, that is, it produces high-quality results under a noisy environment.
arXiv Detail & Related papers (2021-04-13T17:54:33Z) - Data Augmentation for Spoken Language Understanding via Pretrained
Language Models [113.56329266325902]
Training of spoken language understanding (SLU) models often faces the problem of data scarcity.
We put forward a data augmentation method using pretrained language models to boost the variability and accuracy of generated utterances.
arXiv Detail & Related papers (2020-04-29T04:07:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.