DC-GNet: Deep Mesh Relation Capturing Graph Convolution Network for 3D
Human Shape Reconstruction
- URL: http://arxiv.org/abs/2108.12384v1
- Date: Fri, 27 Aug 2021 16:43:32 GMT
- Title: DC-GNet: Deep Mesh Relation Capturing Graph Convolution Network for 3D
Human Shape Reconstruction
- Authors: Shihao Zhou, Mengxi Jiang, Shanshan Cai, Yunqi Lei
- Abstract summary: We propose a Deep Mesh Relation Capturing Graph Convolution Network, DC-GNet, with a shape completion task for 3D human shape reconstruction.
Our approach encodes mesh structure from more subtle relations between nodes in a more distant region.
Our shape completion module alleviates the performance degradation issue in the outdoor scene.
- Score: 1.290382979353427
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we aim to reconstruct a full 3D human shape from a single
image. Previous vertex-level and parameter regression approaches reconstruct 3D
human shape based on a pre-defined adjacency matrix to encode positive
relations between nodes. The deep topological relations for the surface of the
3D human body are not carefully exploited. Moreover, the performance of most
existing approaches often suffer from domain gap when handling more occlusion
cases in real-world scenes.
In this work, we propose a Deep Mesh Relation Capturing Graph Convolution
Network, DC-GNet, with a shape completion task for 3D human shape
reconstruction. Firstly, we propose to capture deep relations within mesh
vertices, where an adaptive matrix encoding both positive and negative
relations is introduced. Secondly, we propose a shape completion task to learn
prior about various kinds of occlusion cases. Our approach encodes mesh
structure from more subtle relations between nodes in a more distant region.
Furthermore, our shape completion module alleviates the performance degradation
issue in the outdoor scene. Extensive experiments on several benchmarks show
that our approach outperforms the previous 3D human pose and shape estimation
approaches.
Related papers
- Sampling is Matter: Point-guided 3D Human Mesh Reconstruction [0.0]
This paper presents a simple yet powerful method for 3D human mesh reconstruction from a single RGB image.
Experimental results on benchmark datasets show that the proposed method efficiently improves the performance of 3D human mesh reconstruction.
arXiv Detail & Related papers (2023-04-19T08:45:26Z) - 3D Surface Reconstruction in the Wild by Deforming Shape Priors from
Synthetic Data [24.97027425606138]
Reconstructing the underlying 3D surface of an object from a single image is a challenging problem.
We present a new method for joint category-specific 3D reconstruction and object pose estimation from a single image.
Our approach achieves state-of-the-art reconstruction performance across several real-world datasets.
arXiv Detail & Related papers (2023-02-24T20:37:27Z) - Neural Capture of Animatable 3D Human from Monocular Video [38.974181971541846]
We present a novel paradigm of building an animatable 3D human representation from a monocular video input, such that it can be rendered in any unseen poses and views.
Our method is based on a dynamic Neural Radiance Field (NeRF) rigged by a mesh-based parametric 3D human model serving as a geometry proxy.
arXiv Detail & Related papers (2022-08-18T09:20:48Z) - Neural 3D Scene Reconstruction with the Manhattan-world Assumption [58.90559966227361]
This paper addresses the challenge of reconstructing 3D indoor scenes from multi-view images.
Planar constraints can be conveniently integrated into the recent implicit neural representation-based reconstruction methods.
The proposed method outperforms previous methods by a large margin on 3D reconstruction quality.
arXiv Detail & Related papers (2022-05-05T17:59:55Z) - Beyond 3DMM: Learning to Capture High-fidelity 3D Face Shape [77.95154911528365]
3D Morphable Model (3DMM) fitting has widely benefited face analysis due to its strong 3D priori.
Previous reconstructed 3D faces suffer from degraded visual verisimilitude due to the loss of fine-grained geometry.
This paper proposes a complete solution to capture the personalized shape so that the reconstructed shape looks identical to the corresponding person.
arXiv Detail & Related papers (2022-04-09T03:46:18Z) - Deep3DPose: Realtime Reconstruction of Arbitrarily Posed Human Bodies
from Single RGB Images [5.775625085664381]
We introduce an approach that accurately reconstructs 3D human poses and detailed 3D full-body geometric models from single images in realtime.
Key idea of our approach is a novel end-to-end multi-task deep learning framework that uses single images to predict five outputs simultaneously.
We show the system advances the frontier of 3D human body and pose reconstruction from single images by quantitative evaluations and comparisons with state-of-the-art methods.
arXiv Detail & Related papers (2021-06-22T04:26:11Z) - 3D Human Pose Regression using Graph Convolutional Network [68.8204255655161]
We propose a graph convolutional network named PoseGraphNet for 3D human pose regression from 2D poses.
Our model's performance is close to the state-of-the-art, but with much fewer parameters.
arXiv Detail & Related papers (2021-05-21T14:41:31Z) - Coherent Reconstruction of Multiple Humans from a Single Image [68.3319089392548]
In this work, we address the problem of multi-person 3D pose estimation from a single image.
A typical regression approach in the top-down setting of this problem would first detect all humans and then reconstruct each one of them independently.
Our goal is to train a single network that learns to avoid these problems and generate a coherent 3D reconstruction of all the humans in the scene.
arXiv Detail & Related papers (2020-06-15T17:51:45Z) - Implicit Functions in Feature Space for 3D Shape Reconstruction and
Completion [53.885984328273686]
Implicit Feature Networks (IF-Nets) deliver continuous outputs, can handle multiple topologies, and complete shapes for missing or sparse input data.
IF-Nets clearly outperform prior work in 3D object reconstruction in ShapeNet, and obtain significantly more accurate 3D human reconstructions.
arXiv Detail & Related papers (2020-03-03T11:14:29Z) - Learning 3D Human Shape and Pose from Dense Body Parts [117.46290013548533]
We propose a Decompose-and-aggregate Network (DaNet) to learn 3D human shape and pose from dense correspondences of body parts.
Messages from local streams are aggregated to enhance the robust prediction of the rotation-based poses.
Our method is validated on both indoor and real-world datasets including Human3.6M, UP3D, COCO, and 3DPW.
arXiv Detail & Related papers (2019-12-31T15:09:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.