An explicit vector algorithm for high-girth MaxCut
- URL: http://arxiv.org/abs/2108.12477v1
- Date: Fri, 27 Aug 2021 19:47:56 GMT
- Title: An explicit vector algorithm for high-girth MaxCut
- Authors: Jessica K. Thompson, Ojas Parekh, Kunal Marwaha
- Abstract summary: For every $d geq 3$ and $k geq 4$, our approximation guarantees are better than those of all other classical and quantum algorithms known to the authors.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We give an approximation algorithm for MaxCut and provide guarantees on the
average fraction of edges cut on $d$-regular graphs of girth $\geq 2k$. For
every $d \geq 3$ and $k \geq 4$, our approximation guarantees are better than
those of all other classical and quantum algorithms known to the authors. Our
algorithm constructs an explicit vector solution to the standard semidefinite
relaxation of MaxCut and applies hyperplane rounding. It may be viewed as a
simplification of the previously best known technique, which approximates
Gaussian wave processes on the infinite $d$-regular tree.
Related papers
- Non-Euclidean High-Order Smooth Convex Optimization [9.940728137241214]
We develop algorithms for the optimization of convex objectives that have H"older continuous $q$-th derivatives with respect to a $p$-norm.
We can also optimize other structured functions.
arXiv Detail & Related papers (2024-11-13T19:22:34Z) - A Scalable Algorithm for Individually Fair K-means Clustering [77.93955971520549]
We present a scalable algorithm for the individually fair ($p$, $k$)-clustering problem introduced by Jung et al. and Mahabadi et al.
A clustering is then called individually fair if it has centers within distance $delta(x)$ of $x$ for each $xin P$.
We show empirically that not only is our algorithm much faster than prior work, but it also produces lower-cost solutions.
arXiv Detail & Related papers (2024-02-09T19:01:48Z) - Private estimation algorithms for stochastic block models and mixture
models [63.07482515700984]
General tools for designing efficient private estimation algorithms.
First efficient $(epsilon, delta)$-differentially private algorithm for both weak recovery and exact recovery.
arXiv Detail & Related papers (2023-01-11T09:12:28Z) - A first-order primal-dual method with adaptivity to local smoothness [64.62056765216386]
We consider the problem of finding a saddle point for the convex-concave objective $min_x max_y f(x) + langle Ax, yrangle - g*(y)$, where $f$ is a convex function with locally Lipschitz gradient and $g$ is convex and possibly non-smooth.
We propose an adaptive version of the Condat-Vu algorithm, which alternates between primal gradient steps and dual steps.
arXiv Detail & Related papers (2021-10-28T14:19:30Z) - The Quantum Approximate Optimization Algorithm at High Depth for MaxCut
on Large-Girth Regular Graphs and the Sherrington-Kirkpatrick Model [0.0]
The Quantum Approximate Optimization Algorithm (QAOA) finds approximate solutions to optimization problems.
We give an iterative formula to evaluate performance for any $D$ at any depth $p$.
We make an optimistic conjecture that the QAOA, as $p$ goes to infinity, will achieve the Parisi value.
arXiv Detail & Related papers (2021-10-27T06:35:59Z) - Classical algorithms and quantum limitations for maximum cut on
high-girth graphs [6.262125516926276]
We show that every (quantum or classical) one-local algorithm achieves on $D$-regular graphs of $> 5$ a maximum cut of at most $1/2 + C/sqrtD$ for $C=1/sqrt2 approx 0.7071$.
We show that there is a classical $k$-local algorithm that achieves a value of $1/2 + C/sqrtD - O (1/sqrtk)$ for $D$-regular graphs of $> 2k+1$, where
arXiv Detail & Related papers (2021-06-10T16:28:23Z) - Local classical MAX-CUT algorithm outperforms $p=2$ QAOA on high-girth
regular graphs [0.0]
We show that for all degrees $D ge 2$ of girth $> 5$, QAOA$ has a larger expected cut fraction than QAOA$$ on $G$.
We conjecture that for every constant $p$, there exists a local classical MAX-CUT algorithm that performs as well as QAOA$_p$ on all graphs.
arXiv Detail & Related papers (2021-01-14T09:17:20Z) - Optimal Low-Degree Hardness of Maximum Independent Set [93.59919600451487]
We study the algorithmic task of finding a large independent set in a sparse ErdHos-R'enyi random graph.
We show that the class of low-degree algorithms can find independent sets of half-optimal size but no larger.
arXiv Detail & Related papers (2020-10-13T17:26:09Z) - Second-Order Information in Non-Convex Stochastic Optimization: Power
and Limitations [54.42518331209581]
We find an algorithm which finds.
epsilon$-approximate stationary point (with $|nabla F(x)|le epsilon$) using.
$(epsilon,gamma)$surimate random random points.
Our lower bounds here are novel even in the noiseless case.
arXiv Detail & Related papers (2020-06-24T04:41:43Z) - Maximizing Determinants under Matroid Constraints [69.25768526213689]
We study the problem of finding a basis $S$ of $M$ such that $det(sum_i in Sv_i v_i v_itop)$ is maximized.
This problem appears in a diverse set of areas such as experimental design, fair allocation of goods, network design, and machine learning.
arXiv Detail & Related papers (2020-04-16T19:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.