CSDS: A Fine-grained Chinese Dataset for Customer Service Dialogue
Summarization
- URL: http://arxiv.org/abs/2108.13139v1
- Date: Mon, 30 Aug 2021 11:56:58 GMT
- Title: CSDS: A Fine-grained Chinese Dataset for Customer Service Dialogue
Summarization
- Authors: Haitao Lin, Liqun Ma, Junnan Zhu, Lu Xiang, Yu Zhou, Jiajun Zhang,
Chengqing Zong
- Abstract summary: We introduce a novel Chinese dataset for Customer Service Dialogue Summarization (CSDS)
CSDS improves the abstractive summaries in two aspects: (1) In addition to the overall summary for the whole dialogue, role-oriented summaries are also provided to acquire different speakers' viewpoints.
We compare various summarization methods on CSDS, and experiment results show that existing methods are prone to generate redundant and incoherent summaries.
- Score: 44.21084429627218
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dialogue summarization has drawn much attention recently. Especially in the
customer service domain, agents could use dialogue summaries to help boost
their works by quickly knowing customers' issues and service progress. These
applications require summaries to contain the perspective of a single speaker
and have a clear topic flow structure. Neither are available in existing
datasets. Therefore, in this paper, we introduce a novel Chinese dataset for
Customer Service Dialogue Summarization (CSDS). CSDS improves the abstractive
summaries in two aspects: (1) In addition to the overall summary for the whole
dialogue, role-oriented summaries are also provided to acquire different
speakers' viewpoints. (2) All the summaries sum up each topic separately, thus
containing the topic-level structure of the dialogue. We define tasks in CSDS
as generating the overall summary and different role-oriented summaries for a
given dialogue. Next, we compare various summarization methods on CSDS, and
experiment results show that existing methods are prone to generate redundant
and incoherent summaries. Besides, the performance becomes much worse when
analyzing the performance on role-oriented summaries and topic structures. We
hope that this study could benchmark Chinese dialogue summarization and benefit
further studies.
Related papers
- Increasing faithfulness in human-human dialog summarization with Spoken Language Understanding tasks [0.0]
We propose an exploration of how incorporating task-related information can enhance the summarization process.
Results show that integrating models with task-related information improves summary accuracy, even with varying word error rates.
arXiv Detail & Related papers (2024-09-16T08:15:35Z) - Long Dialog Summarization: An Analysis [28.223798877781054]
This work emphasizes the significance of creating coherent and contextually rich summaries for effective communication in various applications.
We explore current state-of-the-art approaches for long dialog summarization in different domains and benchmark metrics based evaluations show that one single model does not perform well across various areas for distinct summarization tasks.
arXiv Detail & Related papers (2024-02-26T19:35:45Z) - FCC: Fusing Conversation History and Candidate Provenance for Contextual
Response Ranking in Dialogue Systems [53.89014188309486]
We present a flexible neural framework that can integrate contextual information from multiple channels.
We evaluate our model on the MSDialog dataset widely used for evaluating conversational response ranking tasks.
arXiv Detail & Related papers (2023-03-31T23:58:28Z) - DIONYSUS: A Pre-trained Model for Low-Resource Dialogue Summarization [127.714919036388]
DIONYSUS is a pre-trained encoder-decoder model for summarizing dialogues in any new domain.
Our experiments show that DIONYSUS outperforms existing methods on six datasets.
arXiv Detail & Related papers (2022-12-20T06:21:21Z) - TODSum: Task-Oriented Dialogue Summarization with State Tracking [16.87549093925514]
We introduce a large-scale public Task-Oriented Dialogue Summarization dataset, TODSum.
Compared to existing work, TODSum suffers from severe scattered information issues and requires strict factual consistency.
We propose a state-aware structured dialogue summarization model to integrate dialogue state information and dialogue history.
arXiv Detail & Related papers (2021-10-25T06:53:11Z) - Topic-Oriented Spoken Dialogue Summarization for Customer Service with
Saliency-Aware Topic Modeling [61.67321200994117]
In a customer service system, dialogue summarization can boost service efficiency by creating summaries for long spoken dialogues.
In this work, we focus on topic-oriented dialogue summarization, which generates highly abstractive summaries.
We propose a novel topic-augmented two-stage dialogue summarizer ( TDS) jointly with a saliency-aware neural topic model (SATM) for topic-oriented summarization of customer service dialogues.
arXiv Detail & Related papers (2020-12-14T07:50:25Z) - Multi-View Sequence-to-Sequence Models with Conversational Structure for
Abstractive Dialogue Summarization [72.54873655114844]
Text summarization is one of the most challenging and interesting problems in NLP.
This work proposes a multi-view sequence-to-sequence model by first extracting conversational structures of unstructured daily chats from different views to represent conversations.
Experiments on a large-scale dialogue summarization corpus demonstrated that our methods significantly outperformed previous state-of-the-art models via both automatic evaluations and human judgment.
arXiv Detail & Related papers (2020-10-04T20:12:44Z) - Dialogue-Based Relation Extraction [53.2896545819799]
We present the first human-annotated dialogue-based relation extraction (RE) dataset DialogRE.
We argue that speaker-related information plays a critical role in the proposed task, based on an analysis of similarities and differences between dialogue-based and traditional RE tasks.
Experimental results demonstrate that a speaker-aware extension on the best-performing model leads to gains in both the standard and conversational evaluation settings.
arXiv Detail & Related papers (2020-04-17T03:51:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.