Explaining Classes through Word Attribution
- URL: http://arxiv.org/abs/2108.13653v1
- Date: Tue, 31 Aug 2021 07:22:29 GMT
- Title: Explaining Classes through Word Attribution
- Authors: Samuel R\"onnqvist, Amanda Myntti, Aki-Juhani Kyr\"ol\"ainen, Sampo
Pyysalo, Veronika Laippala, Filip Ginter
- Abstract summary: We propose a method for explaining classes using deep learning models and the Integrated Gradients feature attribution technique.
We demonstrate the approach on Web register (genre) classification using the XML-R model and the Corpus of Online Registers of English (CORE)
- Score: 1.3898207083070262
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, several methods have been proposed for explaining individual
predictions of deep learning models, yet there has been little study of how to
aggregate these predictions to explain how such models view classes as a whole
in text classification tasks. In this work, we propose a method for explaining
classes using deep learning models and the Integrated Gradients feature
attribution technique by aggregating explanations of individual examples in
text classification to general descriptions of the classes. We demonstrate the
approach on Web register (genre) classification using the XML-R model and the
Corpus of Online Registers of English (CORE), finding that the method
identifies plausible and discriminative keywords characterizing all but the
smallest class.
Related papers
- Detecting Statements in Text: A Domain-Agnostic Few-Shot Solution [1.3654846342364308]
State-of-the-art approaches usually involve fine-tuning models on large annotated datasets, which are costly to produce.
We propose and release a qualitative and versatile few-shot learning methodology as a common paradigm for any claim-based textual classification task.
We illustrate this methodology in the context of three tasks: climate change contrarianism detection, topic/stance classification and depression-relates symptoms detection.
arXiv Detail & Related papers (2024-05-09T12:03:38Z) - Training-Free Semantic Segmentation via LLM-Supervision [37.9007813884699]
This paper introduces a new approach to text-supervised semantic segmentation using supervision by a large language model (LLM)
Our method starts from an LLM to generate a detailed set of subclasses for more accurate class representation.
We then employ an advanced text-supervised semantic segmentation model to apply the generated subclasses as target labels.
arXiv Detail & Related papers (2024-03-31T14:37:25Z) - Language Models for Text Classification: Is In-Context Learning Enough? [54.869097980761595]
Recent foundational language models have shown state-of-the-art performance in many NLP tasks in zero- and few-shot settings.
An advantage of these models over more standard approaches is the ability to understand instructions written in natural language (prompts)
This makes them suitable for addressing text classification problems for domains with limited amounts of annotated instances.
arXiv Detail & Related papers (2024-03-26T12:47:39Z) - Text2Model: Text-based Model Induction for Zero-shot Image Classification [38.704831945753284]
We address the challenge of building task-agnostic classifiers using only text descriptions.
We generate zero-shot classifiers using a hypernetwork that receives class descriptions and outputs a multi-class model.
We evaluate this approach in a series of zero-shot classification tasks, for image, point-cloud, and action recognition, using a range of text descriptions.
arXiv Detail & Related papers (2022-10-27T05:19:55Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
Interpretable machine learning offers insights into what factors drive a certain prediction of a black-box system.
Existing methods mainly focus on selecting explanatory input features, which follow either locally additive or instance-wise approaches.
This work exploits the strengths of both methods and proposes a global framework for learning local explanations simultaneously for multiple target classes.
arXiv Detail & Related papers (2022-07-07T06:50:27Z) - A Unified Understanding of Deep NLP Models for Text Classification [88.35418976241057]
We have developed a visual analysis tool, DeepNLPVis, to enable a unified understanding of NLP models for text classification.
The key idea is a mutual information-based measure, which provides quantitative explanations on how each layer of a model maintains the information of input words in a sample.
A multi-level visualization, which consists of a corpus-level, a sample-level, and a word-level visualization, supports the analysis from the overall training set to individual samples.
arXiv Detail & Related papers (2022-06-19T08:55:07Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
We propose a model-agnostic and training scheme for semantic segmentation.
By randomly eliminating certain class information in each training iteration, we effectively reduce feature dependencies among classes.
Models trained with our approach demonstrate strong results on multiple semantic segmentation benchmarks.
arXiv Detail & Related papers (2021-10-31T16:15:09Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
We develop a list of diagnostic properties for evaluating existing explainability techniques.
We compare the saliency scores assigned by the explainability techniques with human annotations of salient input regions to find relations between a model's performance and the agreement of its rationales with human ones.
arXiv Detail & Related papers (2020-09-25T12:01:53Z) - Meta Learning for Few-Shot One-class Classification [0.0]
We formulate the learning of meaningful features for one-class classification as a meta-learning problem.
To learn these representations, we require only multiclass data from similar tasks.
We validate our approach by adapting few-shot classification datasets to the few-shot one-class classification scenario.
arXiv Detail & Related papers (2020-09-11T11:35:28Z) - Commonality-Parsing Network across Shape and Appearance for Partially
Supervised Instance Segmentation [71.59275788106622]
We propose to learn the underlying class-agnostic commonalities that can be generalized from mask-annotated categories to novel categories.
Our model significantly outperforms the state-of-the-art methods on both partially supervised setting and few-shot setting for instance segmentation on COCO dataset.
arXiv Detail & Related papers (2020-07-24T07:23:44Z) - Structured (De)composable Representations Trained with Neural Networks [21.198279941828112]
A template representation refers to the generic representation that captures the characteristics of an entire class.
The proposed technique uses end-to-end deep learning to learn structured and composable representations from input images and discrete labels.
We prove that the representations have a clear structure allowing to decompose the representation into factors that represent classes and environments.
arXiv Detail & Related papers (2020-07-07T10:20:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.