A Protection Method of Trained CNN Model Using Feature Maps Transformed
With Secret Key From Unauthorized Access
- URL: http://arxiv.org/abs/2109.00224v1
- Date: Wed, 1 Sep 2021 07:47:05 GMT
- Title: A Protection Method of Trained CNN Model Using Feature Maps Transformed
With Secret Key From Unauthorized Access
- Authors: MaungMaung AprilPyone and Hitoshi Kiya
- Abstract summary: We propose a model protection method for convolutional neural networks (CNNs) with a secret key.
The proposed method applies a block-wise transformation with a secret key to feature maps in the network.
- Score: 15.483078145498085
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a model protection method for convolutional neural
networks (CNNs) with a secret key so that authorized users get a high
classification accuracy, and unauthorized users get a low classification
accuracy. The proposed method applies a block-wise transformation with a secret
key to feature maps in the network. Conventional key-based model protection
methods cannot maintain a high accuracy when a large key space is selected. In
contrast, the proposed method not only maintains almost the same accuracy as
non-protected accuracy, but also has a larger key space. Experiments were
carried out on the CIFAR-10 dataset, and results show that the proposed model
protection method outperformed the previous key-based model protection methods
in terms of classification accuracy, key space, and robustness against key
estimation attacks and fine-tuning attacks.
Related papers
- Towards Calibrated Deep Clustering Network [60.71776081164377]
In deep clustering, the estimated confidence for a sample belonging to a particular cluster greatly exceeds its actual prediction accuracy.
We propose a novel dual-head (calibration head and clustering head) deep clustering model that can effectively calibrate the estimated confidence and the actual accuracy.
Extensive experiments demonstrate the proposed calibrated deep clustering model not only surpasses state-of-the-art deep clustering methods by 10 times in terms of expected calibration error but also significantly outperforms them in terms of clustering accuracy.
arXiv Detail & Related papers (2024-03-04T11:23:40Z) - Distributed Dynamic Safe Screening Algorithms for Sparse Regularization [73.85961005970222]
We propose a new distributed dynamic safe screening (DDSS) method for sparsity regularized models and apply it on shared-memory and distributed-memory architecture respectively.
We prove that the proposed method achieves the linear convergence rate with lower overall complexity and can eliminate almost all the inactive features in a finite number of iterations almost surely.
arXiv Detail & Related papers (2022-04-23T02:45:55Z) - CC-Cert: A Probabilistic Approach to Certify General Robustness of
Neural Networks [58.29502185344086]
In safety-critical machine learning applications, it is crucial to defend models against adversarial attacks.
It is important to provide provable guarantees for deep learning models against semantically meaningful input transformations.
We propose a new universal probabilistic certification approach based on Chernoff-Cramer bounds.
arXiv Detail & Related papers (2021-09-22T12:46:04Z) - Protecting Semantic Segmentation Models by Using Block-wise Image
Encryption with Secret Key from Unauthorized Access [13.106063755117399]
We propose to protect semantic segmentation models from unauthorized access by utilizing block-wise transformation with a secret key.
Experiment results show that the proposed protection method allows rightful users with the correct key to access the model to full capacity and deteriorate the performance for unauthorized users.
arXiv Detail & Related papers (2021-07-20T09:31:15Z) - Locally Valid and Discriminative Confidence Intervals for Deep Learning
Models [37.57296694423751]
Uncertainty information should be valid (guaranteeing coverage) and discriminative (more uncertain when the expected risk is high)
Most existing Bayesian methods lack frequentist coverage guarantees and usually affect model performance.
We propose Locally Valid and Discriminative confidence intervals (LVD), a simple, efficient and lightweight method to construct discriminative confidence intervals (CIs) for almost any deep learning model.
arXiv Detail & Related papers (2021-06-01T04:39:56Z) - A Protection Method of Trained CNN Model with Secret Key from
Unauthorized Access [15.483078145498085]
We propose a novel method for protecting convolutional neural network (CNN) models with a secret key set.
The method enables us to protect not only from copyright infringement but also the functionality of a model from unauthorized access.
arXiv Detail & Related papers (2021-05-31T07:37:33Z) - Transfer Learning-Based Model Protection With Secret Key [15.483078145498085]
We propose a novel method for protecting trained models with a secret key.
In experiments with the ImageNet dataset, it is shown that the performance of a protected model was close to that of a non-protected model when the correct key was given.
arXiv Detail & Related papers (2021-03-05T08:12:11Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
We present a previously unrecognized threat to robust machine learning models that highlights the importance of training-data quality.
We propose a novel bilevel optimization-based data poisoning attack that degrades the robustness guarantees of certifiably robust classifiers.
Our attack is effective even when the victim trains the models from scratch using state-of-the-art robust training methods.
arXiv Detail & Related papers (2020-12-02T15:30:21Z) - Training DNN Model with Secret Key for Model Protection [17.551718914117917]
We propose a model protection method by using block-wise pixel shuffling with a secret key as a preprocessing technique to input images.
Experiment results show that the performance of the protected model is close to that of non-protected models when the key is correct.
arXiv Detail & Related papers (2020-08-06T04:25:59Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.