Joint Graph Learning and Matching for Semantic Feature Correspondence
- URL: http://arxiv.org/abs/2109.00240v1
- Date: Wed, 1 Sep 2021 08:24:02 GMT
- Title: Joint Graph Learning and Matching for Semantic Feature Correspondence
- Authors: He Liu, Tao Wang, Yidong Li, Congyan Lang, Yi Jin and Haibin Ling
- Abstract summary: We propose a joint emphgraph learning and matching network, named GLAM, to explore reliable graph structures for boosting graph matching.
The proposed method is evaluated on three popular visual matching benchmarks (Pascal VOC, Willow Object and SPair-71k)
It outperforms previous state-of-the-art graph matching methods by significant margins on all benchmarks.
- Score: 69.71998282148762
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, powered by the learned discriminative representation via
graph neural network (GNN) models, deep graph matching methods have made great
progresses in the task of matching semantic features. However, these methods
usually rely on heuristically generated graph patterns, which may introduce
unreliable relationships to hurt the matching performance. In this paper, we
propose a joint \emph{graph learning and matching} network, named GLAM, to
explore reliable graph structures for boosting graph matching. GLAM adopts a
pure attention-based framework for both graph learning and graph matching.
Specifically, it employs two types of attention mechanisms, self-attention and
cross-attention for the task. The self-attention discovers the relationships
between features and to further update feature representations over the learnt
structures; and the cross-attention computes cross-graph correlations between
the two feature sets to be matched for feature reconstruction. Moreover, the
final matching solution is directly derived from the output of the
cross-attention layer, without employing a specific matching decision module.
The proposed method is evaluated on three popular visual matching benchmarks
(Pascal VOC, Willow Object and SPair-71k), and it outperforms previous
state-of-the-art graph matching methods by significant margins on all
benchmarks. Furthermore, the graph patterns learnt by our model are validated
to be able to remarkably enhance previous deep graph matching methods by
replacing their handcrafted graph structures with the learnt ones.
Related papers
- Semantic Random Walk for Graph Representation Learning in Attributed
Graphs [2.318473106845779]
We propose a novel semantic graph representation (SGR) method to formulate the joint optimization of the two heterogeneous sources into a common high-order proximity based framework.
Conventional embedding methods that consider high-order topology proximities can then be easily applied to the newly constructed graph to learn the representations of both node and attribute.
The learned attribute embeddings can also effectively support some semantic-oriented inference tasks, helping to reveal the graph's deep semantic.
arXiv Detail & Related papers (2023-05-11T02:35:16Z) - CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph
Similarity Learning [65.1042892570989]
We propose a contrastive graph matching network (CGMN) for self-supervised graph similarity learning.
We employ two strategies, namely cross-view interaction and cross-graph interaction, for effective node representation learning.
We transform node representations into graph-level representations via pooling operations for graph similarity computation.
arXiv Detail & Related papers (2022-05-30T13:20:26Z) - Stochastic Iterative Graph Matching [11.128153575173213]
We propose a new model, Iterative Graph MAtching, to address the graph matching problem.
Our model defines a distribution of matchings for a graph pair so the model can explore a wide range of possible matchings.
We conduct extensive experiments across synthetic graph datasets as well as biochemistry and computer vision applications.
arXiv Detail & Related papers (2021-06-04T02:05:35Z) - Learnable Graph Matching: Incorporating Graph Partitioning with Deep
Feature Learning for Multiple Object Tracking [58.30147362745852]
Data association across frames is at the core of Multiple Object Tracking (MOT) task.
Existing methods mostly ignore the context information among tracklets and intra-frame detections.
We propose a novel learnable graph matching method to address these issues.
arXiv Detail & Related papers (2021-03-30T08:58:45Z) - Accurate Learning of Graph Representations with Graph Multiset Pooling [45.72542969364438]
We propose a Graph Multiset Transformer (GMT) that captures the interaction between nodes according to their structural dependencies.
Our experimental results show that GMT significantly outperforms state-of-the-art graph pooling methods on graph classification benchmarks.
arXiv Detail & Related papers (2021-02-23T07:45:58Z) - Deep Reinforcement Learning of Graph Matching [63.469961545293756]
Graph matching (GM) under node and pairwise constraints has been a building block in areas from optimization to computer vision.
We present a reinforcement learning solver for GM i.e. RGM that seeks the node correspondence between pairwise graphs.
Our method differs from the previous deep graph matching model in the sense that they are focused on the front-end feature extraction and affinity function learning.
arXiv Detail & Related papers (2020-12-16T13:48:48Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
We propose a multi-level graph matching network (MGMN) framework for computing the graph similarity between any pair of graph-structured objects.
To compensate for the lack of standard benchmark datasets, we have created and collected a set of datasets for both the graph-graph classification and graph-graph regression tasks.
Comprehensive experiments demonstrate that MGMN consistently outperforms state-of-the-art baseline models on both the graph-graph classification and graph-graph regression tasks.
arXiv Detail & Related papers (2020-07-08T19:48:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.