A Context-Aware Hierarchical BERT Fusion Network for Multi-turn Dialog
Act Detection
- URL: http://arxiv.org/abs/2109.01267v1
- Date: Fri, 3 Sep 2021 02:00:03 GMT
- Title: A Context-Aware Hierarchical BERT Fusion Network for Multi-turn Dialog
Act Detection
- Authors: Ting-Wei Wu, Ruolin Su, Biing-Hwang Juang
- Abstract summary: CaBERT-SLU is a context-aware hierarchical BERT fusion Network (CaBERT-SLU)
Our approach reaches new state-of-the-art (SOTA) performances in two complicated multi-turn dialogue datasets.
- Score: 6.361198391681688
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The success of interactive dialog systems is usually associated with the
quality of the spoken language understanding (SLU) task, which mainly
identifies the corresponding dialog acts and slot values in each turn. By
treating utterances in isolation, most SLU systems often overlook the semantic
context in which a dialog act is expected. The act dependency between turns is
non-trivial and yet critical to the identification of the correct semantic
representations. Previous works with limited context awareness have exposed the
inadequacy of dealing with complexity in multiproned user intents, which are
subject to spontaneous change during turn transitions. In this work, we propose
to enhance SLU in multi-turn dialogs, employing a context-aware hierarchical
BERT fusion Network (CaBERT-SLU) to not only discern context information within
a dialog but also jointly identify multiple dialog acts and slots in each
utterance. Experimental results show that our approach reaches new
state-of-the-art (SOTA) performances in two complicated multi-turn dialogue
datasets with considerable improvements compared with previous methods, which
only consider single utterances for multiple intents and slot filling.
Related papers
- DialCLIP: Empowering CLIP as Multi-Modal Dialog Retriever [83.33209603041013]
We propose a parameter-efficient prompt-tuning method named DialCLIP for multi-modal dialog retrieval.
Our approach introduces a multi-modal context generator to learn context features which are distilled into prompts within the pre-trained vision-language model CLIP.
To facilitate various types of retrieval, we also design multiple experts to learn mappings from CLIP outputs to multi-modal representation space.
arXiv Detail & Related papers (2024-01-02T07:40:12Z) - Are cascade dialogue state tracking models speaking out of turn in
spoken dialogues? [1.786898113631979]
This paper proposes a comprehensive analysis of the errors of state of the art systems in complex settings such as Dialogue State Tracking.
Based on spoken MultiWoz, we identify that errors on non-categorical slots' values are essential to address in order to bridge the gap between spoken and chat-based dialogue systems.
arXiv Detail & Related papers (2023-11-03T08:45:22Z) - Multi-User MultiWOZ: Task-Oriented Dialogues among Multiple Users [51.34484827552774]
We release the Multi-User MultiWOZ dataset: task-oriented dialogues among two users and one agent.
These dialogues reflect interesting dynamics of collaborative decision-making in task-oriented scenarios.
We propose a novel task of multi-user contextual query rewriting: to rewrite a task-oriented chat between two users as a concise task-oriented query.
arXiv Detail & Related papers (2023-10-31T14:12:07Z) - Self-Explanation Prompting Improves Dialogue Understanding in Large
Language Models [52.24756457516834]
We propose a novel "Self-Explanation" prompting strategy to enhance the comprehension abilities of Large Language Models (LLMs)
This task-agnostic approach requires the model to analyze each dialogue utterance before task execution, thereby improving performance across various dialogue-centric tasks.
Experimental results from six benchmark datasets confirm that our method consistently outperforms other zero-shot prompts and matches or exceeds the efficacy of few-shot prompts.
arXiv Detail & Related papers (2023-09-22T15:41:34Z) - Beyond the Granularity: Multi-Perspective Dialogue Collaborative
Selection for Dialogue State Tracking [18.172993687706708]
In dialogue state tracking, dialogue history is a crucial material, and its utilization varies between different models.
We propose DiCoS-DST to dynamically select the relevant dialogue contents corresponding to each slot for state updating.
Our approach achieves new state-of-the-art performance on MultiWOZ 2.1 and MultiWOZ 2.2, and achieves superior performance on multiple mainstream benchmark datasets.
arXiv Detail & Related papers (2022-05-20T10:08:45Z) - HybriDialogue: An Information-Seeking Dialogue Dataset Grounded on
Tabular and Textual Data [87.67278915655712]
We present a new dialogue dataset, HybriDialogue, which consists of crowdsourced natural conversations grounded on both Wikipedia text and tables.
The conversations are created through the decomposition of complex multihop questions into simple, realistic multiturn dialogue interactions.
arXiv Detail & Related papers (2022-04-28T00:52:16Z) - Back to the Future: Bidirectional Information Decoupling Network for
Multi-turn Dialogue Modeling [80.51094098799736]
We propose Bidirectional Information Decoupling Network (BiDeN) as a universal dialogue encoder.
BiDeN explicitly incorporates both the past and future contexts and can be generalized to a wide range of dialogue-related tasks.
Experimental results on datasets of different downstream tasks demonstrate the universality and effectiveness of our BiDeN.
arXiv Detail & Related papers (2022-04-18T03:51:46Z) - Utterance Rewriting with Contrastive Learning in Multi-turn Dialogue [22.103162555263143]
We introduce contrastive learning and multi-task learning to jointly model the problem.
Our proposed model achieves state-of-the-art performance on several public datasets.
arXiv Detail & Related papers (2022-03-22T10:13:27Z) - Knowledge Augmented BERT Mutual Network in Multi-turn Spoken Dialogues [6.4144180888492075]
We propose to equip a BERT-based joint model with a knowledge attention module to mutually leverage dialogue contexts between two SLU tasks.
A gating mechanism is further utilized to filter out irrelevant knowledge triples and to circumvent distracting comprehension.
Experimental results in two complicated multi-turn dialogue datasets have demonstrate by mutually modeling two SLU tasks with filtered knowledge and dialogue contexts.
arXiv Detail & Related papers (2022-02-23T04:03:35Z) - Integrating Dialog History into End-to-End Spoken Language Understanding
Systems [37.08876551722831]
We investigate the importance of dialog history and how it can be effectively integrated into end-to-end spoken language understanding systems.
While processing a spoken utterance, our proposed RNN transducer (RNN-T) based SLU model has access to its dialog history in the form of decoded transcripts and SLU labels of previous turns.
We evaluate our approach on a recently released spoken dialog data set, the HarperValleyBank corpus.
arXiv Detail & Related papers (2021-08-18T22:24:11Z) - Masking Orchestration: Multi-task Pretraining for Multi-role Dialogue
Representation Learning [50.5572111079898]
Multi-role dialogue understanding comprises a wide range of diverse tasks such as question answering, act classification, dialogue summarization etc.
While dialogue corpora are abundantly available, labeled data, for specific learning tasks, can be highly scarce and expensive.
In this work, we investigate dialogue context representation learning with various types unsupervised pretraining tasks.
arXiv Detail & Related papers (2020-02-27T04:36:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.