Thermally-Polarized Solid-State Spin Sensor
- URL: http://arxiv.org/abs/2109.01576v1
- Date: Fri, 3 Sep 2021 15:13:56 GMT
- Title: Thermally-Polarized Solid-State Spin Sensor
- Authors: Reginald Wilcox, Erik Eisenach, John Barry, Matthew Steinecker,
Michael O'Keeffe, Dirk Englund, Danielle Braje
- Abstract summary: Quantum sensors based on spin defect ensembles have seen rapid development in recent years, with a wide array of target applications.
We demonstrate a solid-state sensor employing a non-optical state preparation technique, which harnesses thermal population induced by the defect's zero-field splitting.
This approach yields a near-unity filling factor and high single-spin-photon imbalances producing a magnetometer with a broadband sensitivity of 9.7 pT/$sqrttextHz$.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum sensors based on spin defect ensembles have seen rapid development in
recent years, with a wide array of target applications. Historically, these
sensors have used optical methods to prepare or read out quantum states.
However, these methods are limited to optically-polarizable spin defects, and
the spin ensemble size is typically limited by the available optical power or
acceptable optical heat load. We demonstrate a solid-state sensor employing a
non-optical state preparation technique, which harnesses thermal population
imbalances induced by the defect's zero-field splitting. Readout is performed
using the recently-demonstrated microwave cavity readout technique, resulting
in a sensor architecture that is entirely non-optical and broadly applicable to
all solid-state paramagnetic defects with a zero-field splitting. The
implementation in this work uses Cr$^{3+}$ defects in a sapphire (Al$_2$O$_3$)
crystal and a simple microwave architecture where the host crystal also serves
as the high quality-factor resonator. This approach yields a near-unity filling
factor and high single-spin-photon coupling, producing a magnetometer with a
broadband sensitivity of 9.7 pT/$\sqrt{\text{Hz}}$.
Related papers
- A spin-refrigerated cavity quantum electrodynamic sensor [1.6713959634020665]
Quantum sensors based on solid-state defects, in particular nitrogen-vacancy centers in diamond, enable precise measurement of magnetic fields, temperature, rotation, and electric fields.
We introduce a cavity quantum electrodynamic (cQED) hybrid system operating in the strong coupling regime, which enables high readout fidelity of an NV ensemble.
We demonstrate a broadband sensitivity of 580 fT/$sqrtmathrmHz$ around 15 kHz in ambient conditions.
arXiv Detail & Related papers (2024-04-16T14:56:50Z) - Optically-biased Rydberg microwave receiver enabled by hybrid nonlinear
interferometry [0.0]
coupling of Rydberg vapors medium both to microwave and optical fields allows harnessing the merits of all-optical detection.
We propose optical-bias detection, that allows truly all-optical operation, while retaining most of the sensitivity.
We report the sensitivity of $176 mathrmnV/cm/sqrtHz$ and reliable operation up to $3.5 mathrmmV/cm$ of $13.9 mathrmGHz$ electric field.
arXiv Detail & Related papers (2024-03-08T13:39:45Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - Microwave-based quantum control and coherence protection of tin-vacancy
spin qubits in a strain-tuned diamond membrane heterostructure [54.501132156894435]
Tin-vacancy center (SnV) in diamond is a promising spin-photon interface with desirable optical and spin properties at 1.7 K.
We introduce a new platform that overcomes these challenges - SnV centers in uniformly strained thin diamond membranes.
The presence of crystal strain suppresses temperature dependent dephasing processes, leading to a considerable improvement of the coherence time up to 223 $mu$s at 4 K.
arXiv Detail & Related papers (2023-07-21T21:40:21Z) - Entangling microwaves with optical light [0.0]
Entanglement is a quantum mechanical property.
We create and verify entanglement between microwave and optical fields in a millikelvin environment.
This establishes the long-sought non-classical correlations between superconducting circuits and telecom wavelength light.
arXiv Detail & Related papers (2023-01-09T13:10:51Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Magneto Optical Sensing beyond the Shot Noise Limit [0.2446672595462589]
We propose a truncated nonlinear interferometric readout for low-temperature magneto-optical Kerr effect measurements.
We show that 10 $textnrad/sqrttextHz$ sensitivity is achievable with optical power as small as 1 $mu$W.
arXiv Detail & Related papers (2021-08-03T01:53:46Z) - Cavity quantum electrodynamic readout of a solid-state spin sensor [0.0]
Solid-state spin sensors still lack a universal, high-fidelity readout technique.
We demonstrate high-fidelity, room-temperature readout of an ensemble of nitrogen-vacancy (NV) centers via strong coupling to a dielectric microwave cavity.
Our results pave a clear path to achieve unity readout fidelity of solid-state spin sensors through increased ensemble size, reduced spin-resonance linewidth, or improved cavity quality factor.
arXiv Detail & Related papers (2020-03-02T18:57:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.