RAMA: A Rapid Multicut Algorithm on GPU
- URL: http://arxiv.org/abs/2109.01838v1
- Date: Sat, 4 Sep 2021 10:33:59 GMT
- Title: RAMA: A Rapid Multicut Algorithm on GPU
- Authors: Ahmed Abbas and Paul Swoboda
- Abstract summary: We propose a highly parallel primal-dual algorithm for the multicut (a.k.a.magnitude correlation clustering) problem.
Our algorithm produces primal solutions and dual lower bounds that estimate the distance to optimum.
We can solve very large scale benchmark problems with up to $mathcalO(108)$ variables in a few seconds with small primal-dual gaps.
- Score: 23.281726932718232
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a highly parallel primal-dual algorithm for the multicut (a.k.a.
correlation clustering) problem, a classical graph clustering problem widely
used in machine learning and computer vision. Our algorithm consists of three
steps executed recursively: (1) Finding conflicted cycles that correspond to
violated inequalities of the underlying multicut relaxation, (2) Performing
message passing between the edges and cycles to optimize the Lagrange
relaxation coming from the found violated cycles producing reduced costs and
(3) Contracting edges with high reduced costs through matrix-matrix
multiplications.
Our algorithm produces primal solutions and dual lower bounds that estimate
the distance to optimum. We implement our algorithm on GPUs and show resulting
one to two order-of-magnitudes improvements in execution speed without
sacrificing solution quality compared to traditional serial algorithms that run
on CPUs. We can solve very large scale benchmark problems with up to
$\mathcal{O}(10^8)$ variables in a few seconds with small primal-dual gaps. We
make our code available at https://github.com/pawelswoboda/RAMA.
Related papers
- GreedyML: A Parallel Algorithm for Maximizing Submodular Functions [2.9998889086656586]
We describe a parallel approximation algorithm for maximizing monotone submodular functions on distributed memory multiprocessors.
Our work is motivated by the need to solve submodular optimization problems on massive data sets, for practical applications in areas such as data summarization, machine learning, and graph sparsification.
arXiv Detail & Related papers (2024-03-15T14:19:09Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Breaking 3-Factor Approximation for Correlation Clustering in
Polylogarithmic Rounds [0.23633885460047763]
We study parallel algorithms for the correlation clustering problem.
The goal is to partition the entities into clusters to minimize disagreements with labels.
Currently, all efficient parallel algorithms have an approximation ratio of at least 3.
We propose the first poly-logarithmic algorithm that achieves a better approximation ratio than 3.
arXiv Detail & Related papers (2023-07-13T12:32:49Z) - Learning the Positions in CountSketch [49.57951567374372]
We consider sketching algorithms which first compress data by multiplication with a random sketch matrix, and then apply the sketch to quickly solve an optimization problem.
In this work, we propose the first learning-based algorithms that also optimize the locations of the non-zero entries.
arXiv Detail & Related papers (2023-06-11T07:28:35Z) - Batch-efficient EigenDecomposition for Small and Medium Matrices [65.67315418971688]
EigenDecomposition (ED) is at the heart of many computer vision algorithms and applications.
We propose a QR-based ED method dedicated to the application scenarios of computer vision.
arXiv Detail & Related papers (2022-07-09T09:14:12Z) - A Push-Relabel Based Additive Approximation for Optimal Transport [5.111364864495785]
Exact algorithms for computing Optimal Transport can be slow.
We introduce a new and very simple approach to find an $varepsilon$approximation of the OT distance.
Our algorithm achieves a near-optimal execution time of $O(n2/varepsilon2)$ for computing OT distance.
arXiv Detail & Related papers (2022-03-07T21:40:14Z) - GPU-accelerated Faster Mean Shift with euclidean distance metrics [1.3507758562554621]
Mean-shift algorithm is widely used to solve clustering problems.
In previous research, we proposed a novel GPU-accelerated Faster Mean-shift algorithm.
In this study, we extend and improve the previous algorithm to handle Euclidean distance metrics.
arXiv Detail & Related papers (2021-12-27T20:18:24Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
Bilevel optimization has been widely applied in many important machine learning applications.
We propose two new algorithms for bilevel optimization.
We show that both algorithms achieve the complexity of $mathcalO(epsilon-1.5)$, which outperforms all existing algorithms by the order of magnitude.
arXiv Detail & Related papers (2021-06-08T21:05:30Z) - Fast Parallel Algorithms for Euclidean Minimum Spanning Tree and
Hierarchical Spatial Clustering [6.4805900740861]
We introduce a new notion of well-separation to reduce the work and space of our algorithm for HDBSCAN$*$.
We show that our algorithms are theoretically efficient: they have work (number of operations) matching their sequential counterparts, and polylogarithmic depth (parallel time)
Our experiments on large real-world and synthetic data sets using a 48-core machine show that our fastest algorithms outperform the best serial algorithms for the problems by 11.13--55.89x, and existing parallel algorithms by at least an order of magnitude.
arXiv Detail & Related papers (2021-04-02T16:05:00Z) - Kernel methods through the roof: handling billions of points efficiently [94.31450736250918]
Kernel methods provide an elegant and principled approach to nonparametric learning, but so far could hardly be used in large scale problems.
Recent advances have shown the benefits of a number of algorithmic ideas, for example combining optimization, numerical linear algebra and random projections.
Here, we push these efforts further to develop and test a solver that takes full advantage of GPU hardware.
arXiv Detail & Related papers (2020-06-18T08:16:25Z) - Lagrangian Decomposition for Neural Network Verification [148.0448557991349]
A fundamental component of neural network verification is the computation of bounds on the values their outputs can take.
We propose a novel approach based on Lagrangian Decomposition.
We show that we obtain bounds comparable with off-the-shelf solvers in a fraction of their running time.
arXiv Detail & Related papers (2020-02-24T17:55:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.