On robustness of generative representations against catastrophic
forgetting
- URL: http://arxiv.org/abs/2109.01844v1
- Date: Sat, 4 Sep 2021 11:33:24 GMT
- Title: On robustness of generative representations against catastrophic
forgetting
- Authors: Wojciech Masarczyk, Kamil Deja, Tomasz Trzci\'nski
- Abstract summary: Catastrophic forgetting of previously learned knowledge while learning new tasks is a widely observed limitation of contemporary neural networks.
In this work, we aim at answering this question by posing and validating a set of research hypotheses related to the specificity of representations built internally by neural models.
We observe that representations learned by discriminative models are more prone to catastrophic forgetting than their generative counterparts, which sheds new light on the advantages of developing generative models for continual learning.
- Score: 17.467589890017123
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Catastrophic forgetting of previously learned knowledge while learning new
tasks is a widely observed limitation of contemporary neural networks. Although
many continual learning methods are proposed to mitigate this drawback, the
main question remains unanswered: what is the root cause of catastrophic
forgetting? In this work, we aim at answering this question by posing and
validating a set of research hypotheses related to the specificity of
representations built internally by neural models. More specifically, we design
a set of empirical evaluations that compare the robustness of representations
in discriminative and generative models against catastrophic forgetting. We
observe that representations learned by discriminative models are more prone to
catastrophic forgetting than their generative counterparts, which sheds new
light on the advantages of developing generative models for continual learning.
Finally, our work opens new research pathways and possibilities to adopt
generative models in continual learning beyond mere replay mechanisms.
Related papers
- Looking deeper into interpretable deep learning in neuroimaging: a
comprehensive survey [20.373311465258393]
This paper comprehensively reviews interpretable deep learning models in the neuroimaging domain.
We discuss how multiple recent neuroimaging studies leveraged model interpretability to capture anatomical and functional brain alterations most relevant to model predictions.
arXiv Detail & Related papers (2023-07-14T04:50:04Z) - Continual Learning with Bayesian Model based on a Fixed Pre-trained
Feature Extractor [55.9023096444383]
Current deep learning models are characterised by catastrophic forgetting of old knowledge when learning new classes.
Inspired by the process of learning new knowledge in human brains, we propose a Bayesian generative model for continual learning.
arXiv Detail & Related papers (2022-04-28T08:41:51Z) - Towards Interpretable Deep Reinforcement Learning Models via Inverse
Reinforcement Learning [27.841725567976315]
We propose a novel framework utilizing Adversarial Inverse Reinforcement Learning.
This framework provides global explanations for decisions made by a Reinforcement Learning model.
We capture intuitive tendencies that the model follows by summarizing the model's decision-making process.
arXiv Detail & Related papers (2022-03-30T17:01:59Z) - On the Role of Neural Collapse in Transfer Learning [29.972063833424215]
Recent results show that representations learned by a single classifier over many classes are competitive on few-shot learning problems.
We show that neural collapse generalizes to new samples from the training classes, and -- more importantly -- to new classes as well.
arXiv Detail & Related papers (2021-12-30T16:36:26Z) - When and How to Fool Explainable Models (and Humans) with Adversarial
Examples [1.439518478021091]
We explore the possibilities and limits of adversarial attacks for explainable machine learning models.
First, we extend the notion of adversarial examples to fit in explainable machine learning scenarios.
Next, we propose a comprehensive framework to study whether adversarial examples can be generated for explainable models.
arXiv Detail & Related papers (2021-07-05T11:20:55Z) - ACRE: Abstract Causal REasoning Beyond Covariation [90.99059920286484]
We introduce the Abstract Causal REasoning dataset for systematic evaluation of current vision systems in causal induction.
Motivated by the stream of research on causal discovery in Blicket experiments, we query a visual reasoning system with the following four types of questions in either an independent scenario or an interventional scenario.
We notice that pure neural models tend towards an associative strategy under their chance-level performance, whereas neuro-symbolic combinations struggle in backward-blocking reasoning.
arXiv Detail & Related papers (2021-03-26T02:42:38Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
This paper presents a visual framework to investigate neural network models subjected to adversarial examples.
We show how observing these elements can quickly pinpoint exploited areas in a model.
arXiv Detail & Related papers (2021-03-18T13:04:21Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - Social NCE: Contrastive Learning of Socially-aware Motion
Representations [87.82126838588279]
Experimental results show that the proposed method dramatically reduces the collision rates of recent trajectory forecasting, behavioral cloning and reinforcement learning algorithms.
Our method makes few assumptions about neural architecture designs, and hence can be used as a generic way to promote the robustness of neural motion models.
arXiv Detail & Related papers (2020-12-21T22:25:06Z) - Learning to Rationalize for Nonmonotonic Reasoning with Distant
Supervision [44.32874972577682]
We investigate the extent to which neural models can reason about natural language rationales that explain model predictions.
We use pre-trained language models, neural knowledge models, and distant supervision from related tasks.
Our model shows promises at generating post-hoc rationales explaining why an inference is more or less likely given the additional information.
arXiv Detail & Related papers (2020-12-14T23:50:20Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
Black-box nature of Deep Learning models has posed unanswered questions about what they learn from data.
Generative Adversarial Network (GAN) and multi-objectives are used to furnish a plausible attack to the audited model.
Its utility is showcased within a human face classification task, unveiling the enormous potential of the proposed framework.
arXiv Detail & Related papers (2020-03-25T11:08:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.