Sparse-MLP: A Fully-MLP Architecture with Conditional Computation
- URL: http://arxiv.org/abs/2109.02008v2
- Date: Wed, 8 Sep 2021 20:10:22 GMT
- Title: Sparse-MLP: A Fully-MLP Architecture with Conditional Computation
- Authors: Yuxuan Lou, Fuzhao Xue, Zangwei Zheng, Yang You
- Abstract summary: Mixture-of-Experts (MoE) with sparse conditional computation has been proved an effective architecture for scaling attention-based models to more parameters with comparable computation cost.
We propose Sparse-MLP, scaling the recent-Mixer model with MoE, to achieve a more-efficient architecture.
- Score: 7.901786481399378
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mixture-of-Experts (MoE) with sparse conditional computation has been proved
an effective architecture for scaling attention-based models to more parameters
with comparable computation cost. In this paper, we propose Sparse-MLP, scaling
the recent MLP-Mixer model with sparse MoE layers, to achieve a more
computation-efficient architecture. We replace a subset of dense MLP blocks in
the MLP-Mixer model with Sparse blocks. In each Sparse block, we apply two
stages of MoE layers: one with MLP experts mixing information within channels
along image patch dimension, one with MLP experts mixing information within
patches along the channel dimension. Besides, to reduce computational cost in
routing and improve expert capacity, we design Re-represent layers in each
Sparse block. These layers are to re-scale image representations by two simple
but effective linear transformations. When pre-training on ImageNet-1k with
MoCo v3 algorithm, our models can outperform dense MLP models by 2.5\% on
ImageNet Top-1 accuracy with fewer parameters and computational cost. On
small-scale downstream image classification tasks, i.e. Cifar10 and Cifar100,
our Sparse-MLP can still achieve better performance than baselines.
Related papers
- SparseGrad: A Selective Method for Efficient Fine-tuning of MLP Layers [88.68985153780514]
We propose a new selective PEFT method, namely SparseGrad, that performs well on parameter blocks.
We apply SparseGrad to fine-tune BERT and RoBERTa for the NLU task and LLaMa-2 for the Question-Answering task.
arXiv Detail & Related papers (2024-10-09T19:03:52Z) - BiMLP: Compact Binary Architectures for Vision Multi-Layer Perceptrons [37.28828605119602]
This paper studies the problem of designing compact binary architectures for vision multi-layer perceptrons (MLPs)
We find that previous binarization methods perform poorly due to limited capacity of binary samplings.
We propose to improve the performance of binary mixing and channel mixing (BiMLP) model by enriching the representation ability of binary FC layers.
arXiv Detail & Related papers (2022-12-29T02:43:41Z) - Efficient Language Modeling with Sparse all-MLP [53.81435968051093]
All-MLPs can match Transformers in language modeling, but still lag behind in downstream tasks.
We propose sparse all-MLPs with mixture-of-experts (MoEs) in both feature and input (tokens)
We evaluate its zero-shot in-context learning performance on six downstream tasks, and find that it surpasses Transformer-based MoEs and dense Transformers.
arXiv Detail & Related papers (2022-03-14T04:32:19Z) - UNeXt: MLP-based Rapid Medical Image Segmentation Network [80.16644725886968]
UNet and its latest extensions like TransUNet have been the leading medical image segmentation methods in recent years.
We propose UNeXt which is a Convolutional multilayer perceptron based network for image segmentation.
We show that we reduce the number of parameters by 72x, decrease the computational complexity by 68x, and improve the inference speed by 10x while also obtaining better segmentation performance.
arXiv Detail & Related papers (2022-03-09T18:58:22Z) - RepMLPNet: Hierarchical Vision MLP with Re-parameterized Locality [113.1414517605892]
We propose a methodology, Locality Injection, to incorporate local priors into an FC layer.
RepMLPNet is the first that seamlessly transfer to Cityscapes semantic segmentation.
arXiv Detail & Related papers (2021-12-21T10:28:17Z) - ConvMLP: Hierarchical Convolutional MLPs for Vision [7.874749885641495]
We propose a hierarchical ConMLP: a light-weight, stage-wise, co-design for visual recognition.
We show that ConvMLP can be seamlessly transferred and achieve competitive results with fewer parameters.
arXiv Detail & Related papers (2021-09-09T17:52:57Z) - CycleMLP: A MLP-like Architecture for Dense Prediction [26.74203747156439]
CycleMLP is a versatile backbone for visual recognition and dense predictions.
It can cope with various image sizes and achieves linear computational complexity to image size by using local windows.
CycleMLP aims to provide a competitive baseline on object detection, instance segmentation, and semantic segmentation for models.
arXiv Detail & Related papers (2021-07-21T17:23:06Z) - AS-MLP: An Axial Shifted MLP Architecture for Vision [50.11765148947432]
An Axial Shifted architecture (AS-MLP) is proposed in this paper.
By axially shifting channels of the feature map, AS-MLP is able to obtain the information flow from different directions.
With the proposed AS-MLP architecture, our model obtains 83.3% Top-1 accuracy with 88M parameters and 15.2 GFLOPs on the ImageNet-1K dataset.
arXiv Detail & Related papers (2021-07-18T08:56:34Z) - S$^2$-MLP: Spatial-Shift MLP Architecture for Vision [34.47616917228978]
Recently, visual Transformer (ViT) and its following works abandon the convolution and exploit the self-attention operation.
In this paper, we propose a novel pure architecture, spatial-shift (S$2$-MLP)
arXiv Detail & Related papers (2021-06-14T15:05:11Z) - MLP-Mixer: An all-MLP Architecture for Vision [93.16118698071993]
We present-Mixer, an architecture based exclusively on multi-layer perceptrons (MLPs).
Mixer attains competitive scores on image classification benchmarks, with pre-training and inference comparable to state-of-the-art models.
arXiv Detail & Related papers (2021-05-04T16:17:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.