VARGAN: Variance Enforcing Network Enhanced GAN
- URL: http://arxiv.org/abs/2109.02117v1
- Date: Sun, 5 Sep 2021 16:28:21 GMT
- Title: VARGAN: Variance Enforcing Network Enhanced GAN
- Authors: Sanaz Mohammadjafari, Mucahit Cevik, Ayse Basar
- Abstract summary: We introduce a new GAN architecture called variance enforcing GAN ( VARGAN)
VARGAN incorporates a third network to introduce diversity in the generated samples.
High diversity and low computational complexity, as well as fast convergence, make VARGAN a promising model to alleviate mode collapse.
- Score: 0.6445605125467573
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative adversarial networks (GANs) are one of the most widely used
generative models. GANs can learn complex multi-modal distributions, and
generate real-like samples. Despite the major success of GANs in generating
synthetic data, they might suffer from unstable training process, and mode
collapse. In this paper, we introduce a new GAN architecture called variance
enforcing GAN (VARGAN), which incorporates a third network to introduce
diversity in the generated samples. The third network measures the diversity of
the generated samples, which is used to penalize the generator's loss for low
diversity samples. The network is trained on the available training data and
undesired distributions with limited modality. On a set of synthetic and
real-world image data, VARGAN generates a more diverse set of samples compared
to the recent state-of-the-art models. High diversity and low computational
complexity, as well as fast convergence, make VARGAN a promising model to
alleviate mode collapse.
Related papers
- Improving Out-of-Distribution Robustness of Classifiers via Generative
Interpolation [56.620403243640396]
Deep neural networks achieve superior performance for learning from independent and identically distributed (i.i.d.) data.
However, their performance deteriorates significantly when handling out-of-distribution (OoD) data.
We develop a simple yet effective method called Generative Interpolation to fuse generative models trained from multiple domains for synthesizing diverse OoD samples.
arXiv Detail & Related papers (2023-07-23T03:53:53Z) - LD-GAN: Low-Dimensional Generative Adversarial Network for Spectral
Image Generation with Variance Regularization [72.4394510913927]
Deep learning methods are state-of-the-art for spectral image (SI) computational tasks.
GANs enable diverse augmentation by learning and sampling from the data distribution.
GAN-based SI generation is challenging since the high-dimensionality nature of this kind of data hinders the convergence of the GAN training yielding to suboptimal generation.
We propose a statistical regularization to control the low-dimensional representation variance for the autoencoder training and to achieve high diversity of samples generated with the GAN.
arXiv Detail & Related papers (2023-04-29T00:25:02Z) - Selectively increasing the diversity of GAN-generated samples [8.980453507536017]
We propose a novel method to selectively increase the diversity of GAN-generated samples.
We show the superiority of our method in a synthetic benchmark as well as a real-life scenario simulating data from the Zero Degree Calorimeter of ALICE experiment in CERN.
arXiv Detail & Related papers (2022-07-04T16:27:06Z) - HGAN: Hybrid Generative Adversarial Network [25.940501417539416]
We propose a hybrid generative adversarial network (HGAN) for which we can enforce data density estimation via an autoregressive model.
A novel deep architecture within the GAN formulation is developed to adversarially distill the autoregressive model information in addition to simple GAN training approach.
arXiv Detail & Related papers (2021-02-07T03:54:12Z) - GANs with Variational Entropy Regularizers: Applications in Mitigating
the Mode-Collapse Issue [95.23775347605923]
Building on the success of deep learning, Generative Adversarial Networks (GANs) provide a modern approach to learn a probability distribution from observed samples.
GANs often suffer from the mode collapse issue where the generator fails to capture all existing modes of the input distribution.
We take an information-theoretic approach and maximize a variational lower bound on the entropy of the generated samples to increase their diversity.
arXiv Detail & Related papers (2020-09-24T19:34:37Z) - Lessons Learned from the Training of GANs on Artificial Datasets [0.0]
Generative Adversarial Networks (GANs) have made great progress in synthesizing realistic images in recent years.
GANs are prone to underfitting or overfitting, making the analysis of them difficult and constrained.
We train them on artificial datasets where there are infinitely many samples and the real data distributions are simple.
We find that training mixtures of GANs leads to more performance gain compared to increasing the network depth or width.
arXiv Detail & Related papers (2020-07-13T14:51:02Z) - Generative Adversarial Networks (GANs): An Overview of Theoretical
Model, Evaluation Metrics, and Recent Developments [9.023847175654602]
Generative Adversarial Network (GAN) is an effective method to produce samples of large-scale data distribution.
GANs provide an appropriate way to learn deep representations without widespread use of labeled training data.
In GANs, the generative model is estimated via a competitive process where the generator and discriminator networks are trained simultaneously.
arXiv Detail & Related papers (2020-05-27T05:56:53Z) - When Relation Networks meet GANs: Relation GANs with Triplet Loss [110.7572918636599]
Training stability is still a lingering concern of generative adversarial networks (GANs)
In this paper, we explore a relation network architecture for the discriminator and design a triplet loss which performs better generalization and stability.
Experiments on benchmark datasets show that the proposed relation discriminator and new loss can provide significant improvement on variable vision tasks.
arXiv Detail & Related papers (2020-02-24T11:35:28Z) - Brainstorming Generative Adversarial Networks (BGANs): Towards
Multi-Agent Generative Models with Distributed Private Datasets [70.62568022925971]
generative adversarial networks (GANs) must be fed by large datasets that adequately represent the data space.
In many scenarios, the available datasets may be limited and distributed across multiple agents, each of which is seeking to learn the distribution of the data on its own.
In this paper, a novel brainstorming GAN (BGAN) architecture is proposed using which multiple agents can generate real-like data samples while operating in a fully distributed manner.
arXiv Detail & Related papers (2020-02-02T02:58:32Z) - Unsupervised multi-modal Styled Content Generation [61.040392094140245]
UMMGAN is a novel architecture designed to better model multi-modal distributions in an unsupervised fashion.
We show that UMMGAN effectively disentangles between modes and style, thereby providing an independent degree of control over the generated content.
arXiv Detail & Related papers (2020-01-10T19:36:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.