Self-supervised Product Quantization for Deep Unsupervised Image
Retrieval
- URL: http://arxiv.org/abs/2109.02244v1
- Date: Mon, 6 Sep 2021 05:02:34 GMT
- Title: Self-supervised Product Quantization for Deep Unsupervised Image
Retrieval
- Authors: Young Kyun Jang and Nam Ik Cho
- Abstract summary: Supervised deep learning-based hash and vector quantization are enabling fast and large-scale image retrieval systems.
We propose the first deep unsupervised image retrieval method dubbed Self-supervised Product Quantization (SPQ) network, which is label-free and trained in a self-supervised manner.
Our method analyzes the image contents to extract descriptive features, allowing us to understand image representations for accurate retrieval.
- Score: 21.99902461562925
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Supervised deep learning-based hash and vector quantization are enabling fast
and large-scale image retrieval systems. By fully exploiting label annotations,
they are achieving outstanding retrieval performances compared to the
conventional methods. However, it is painstaking to assign labels precisely for
a vast amount of training data, and also, the annotation process is
error-prone. To tackle these issues, we propose the first deep unsupervised
image retrieval method dubbed Self-supervised Product Quantization (SPQ)
network, which is label-free and trained in a self-supervised manner. We design
a Cross Quantized Contrastive learning strategy that jointly learns codewords
and deep visual descriptors by comparing individually transformed images
(views). Our method analyzes the image contents to extract descriptive
features, allowing us to understand image representations for accurate
retrieval. By conducting extensive experiments on benchmarks, we demonstrate
that the proposed method yields state-of-the-art results even without
supervised pretraining.
Related papers
- Shatter and Gather: Learning Referring Image Segmentation with Text
Supervision [52.46081425504072]
We present a new model that discovers semantic entities in input image and then combines such entities relevant to text query to predict the mask of the referent.
Our method was evaluated on four public benchmarks for referring image segmentation, where it clearly outperformed the existing method for the same task and recent open-vocabulary segmentation models on all the benchmarks.
arXiv Detail & Related papers (2023-08-29T15:39:15Z) - Learning to Annotate Part Segmentation with Gradient Matching [58.100715754135685]
This paper focuses on tackling semi-supervised part segmentation tasks by generating high-quality images with a pre-trained GAN.
In particular, we formulate the annotator learning as a learning-to-learn problem.
We show that our method can learn annotators from a broad range of labelled images including real images, generated images, and even analytically rendered images.
arXiv Detail & Related papers (2022-11-06T01:29:22Z) - LEAD: Self-Supervised Landmark Estimation by Aligning Distributions of
Feature Similarity [49.84167231111667]
Existing works in self-supervised landmark detection are based on learning dense (pixel-level) feature representations from an image.
We introduce an approach to enhance the learning of dense equivariant representations in a self-supervised fashion.
We show that having such a prior in the feature extractor helps in landmark detection, even under drastically limited number of annotations.
arXiv Detail & Related papers (2022-04-06T17:48:18Z) - Semantic-Aware Generation for Self-Supervised Visual Representation
Learning [116.5814634936371]
We advocate for Semantic-aware Generation (SaGe) to facilitate richer semantics rather than details to be preserved in the generated image.
SaGe complements the target network with view-specific features and thus alleviates the semantic degradation brought by intensive data augmentations.
We execute SaGe on ImageNet-1K and evaluate the pre-trained models on five downstream tasks including nearest neighbor test, linear classification, and fine-scaled image recognition.
arXiv Detail & Related papers (2021-11-25T16:46:13Z) - Self-Ensembling Contrastive Learning for Semi-Supervised Medical Image
Segmentation [6.889911520730388]
We aim to boost the performance of semi-supervised learning for medical image segmentation with limited labels.
We learn latent representations directly at feature-level by imposing contrastive loss on unlabeled images.
We conduct experiments on an MRI and a CT segmentation dataset and demonstrate that the proposed method achieves state-of-the-art performance.
arXiv Detail & Related papers (2021-05-27T03:27:58Z) - Pseudo Pixel-level Labeling for Images with Evolving Content [5.573543601558405]
We propose a pseudo-pixel-level label generation technique to reduce the amount of effort for manual annotation of images.
We train two semantic segmentation models with VGG and ResNet backbones on images labeled using our pseudo labeling method and those of a state-of-the-art method.
The results indicate that using our pseudo-labels instead of those generated using the state-of-the-art method in the training process improves the mean-IoU and the frequency-weighted-IoU of the VGG and ResNet-based semantic segmentation models by 3.36%, 2.58%, 10
arXiv Detail & Related papers (2021-05-20T18:14:19Z) - Grafit: Learning fine-grained image representations with coarse labels [114.17782143848315]
This paper tackles the problem of learning a finer representation than the one provided by training labels.
By jointly leveraging the coarse labels and the underlying fine-grained latent space, it significantly improves the accuracy of category-level retrieval methods.
arXiv Detail & Related papers (2020-11-25T19:06:26Z) - Learning Representations by Predicting Bags of Visual Words [55.332200948110895]
Self-supervised representation learning targets to learn convnet-based image representations from unlabeled data.
Inspired by the success of NLP methods in this area, in this work we propose a self-supervised approach based on spatially dense image descriptions.
arXiv Detail & Related papers (2020-02-27T16:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.