DialogLM: Pre-trained Model for Long Dialogue Understanding and
Summarization
- URL: http://arxiv.org/abs/2109.02492v1
- Date: Mon, 6 Sep 2021 13:55:03 GMT
- Title: DialogLM: Pre-trained Model for Long Dialogue Understanding and
Summarization
- Authors: Ming Zhong, Yang Liu, Yichong Xu, Chenguang Zhu, Michael Zeng
- Abstract summary: We present a pre-training framework for long dialogue understanding and summarization.
Considering the nature of long conversations, we propose a window-based denoising approach for generative pre-training.
We conduct extensive experiments on five datasets of long dialogues, covering tasks of dialogue summarization, abstractive question answering and topic segmentation.
- Score: 19.918194137007653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dialogue is an essential part of human communication and cooperation.
Existing research mainly focuses on short dialogue scenarios in a one-on-one
fashion. However, multi-person interactions in the real world, such as meetings
or interviews, are frequently over a few thousand words. There is still a lack
of corresponding research and powerful tools to understand and process such
long dialogues. Therefore, in this work, we present a pre-training framework
for long dialogue understanding and summarization. Considering the nature of
long conversations, we propose a window-based denoising approach for generative
pre-training. For a dialogue, it corrupts a window of text with
dialogue-inspired noise, and guides the model to reconstruct this window based
on the content of the remaining conversation. Furthermore, to process longer
input, we augment the model with sparse attention which is combined with
conventional attention in a hybrid manner. We conduct extensive experiments on
five datasets of long dialogues, covering tasks of dialogue summarization,
abstractive question answering and topic segmentation. Experimentally, we show
that our pre-trained model DialogLM significantly surpasses the
state-of-the-art models across datasets and tasks.
Related papers
- Let's Go Real Talk: Spoken Dialogue Model for Face-to-Face Conversation [55.043492250775294]
We introduce a novel Face-to-Face spoken dialogue model.
It processes audio-visual speech from user input and generates audio-visual speech as the response.
We also introduce MultiDialog, the first large-scale multimodal spoken dialogue corpus.
arXiv Detail & Related papers (2024-06-12T04:48:36Z) - Conversation Chronicles: Towards Diverse Temporal and Relational
Dynamics in Multi-Session Conversations [9.249662593315541]
We introduce a new 1M multi-session dialogue dataset, Conversation Chronicles, for implementing a long-term conversation setup.
We show that dialogue episodes in Conversation Chronicles reflect those properties while maintaining coherent and consistent interactions.
We also propose a dialogue model, called ReBot, which consists of chronological summarization and dialogue generation modules.
arXiv Detail & Related papers (2023-10-20T11:06:21Z) - Multi-turn Dialogue Comprehension from a Topic-aware Perspective [70.37126956655985]
This paper proposes to model multi-turn dialogues from a topic-aware perspective.
We use a dialogue segmentation algorithm to split a dialogue passage into topic-concentrated fragments in an unsupervised way.
We also present a novel model, Topic-Aware Dual-Attention Matching (TADAM) Network, which takes topic segments as processing elements.
arXiv Detail & Related papers (2023-09-18T11:03:55Z) - STRUDEL: Structured Dialogue Summarization for Dialogue Comprehension [42.57581945778631]
Abstractive dialogue summarization has long been viewed as an important standalone task in natural language processing.
We propose a novel type of dialogue summarization task - STRUctured DiaLoguE Summarization.
We show that our STRUDEL dialogue comprehension model can significantly improve the dialogue comprehension performance of transformer encoder language models.
arXiv Detail & Related papers (2022-12-24T04:39:54Z) - A Benchmark for Understanding and Generating Dialogue between Characters
in Stories [75.29466820496913]
We present the first study to explore whether machines can understand and generate dialogue in stories.
We propose two new tasks including Masked Dialogue Generation and Dialogue Speaker Recognition.
We show the difficulty of the proposed tasks by testing existing models with automatic and manual evaluation on DialStory.
arXiv Detail & Related papers (2022-09-18T10:19:04Z) - Structural Modeling for Dialogue Disentanglement [43.352833140317486]
Multi-party dialogue context Tangled multi-party dialogue context leads to challenges for dialogue reading comprehension.
This work designs a novel model to disentangle multi-party history into threads, by taking dialogue structure features into account.
arXiv Detail & Related papers (2021-10-15T11:28:43Z) - Advances in Multi-turn Dialogue Comprehension: A Survey [51.215629336320305]
Training machines to understand natural language and interact with humans is an elusive and essential task of artificial intelligence.
This paper reviews the previous methods from the technical perspective of dialogue modeling for the dialogue comprehension task.
In addition, we categorize dialogue-related pre-training techniques which are employed to enhance PrLMs in dialogue scenarios.
arXiv Detail & Related papers (2021-10-11T03:52:37Z) - "How Robust r u?": Evaluating Task-Oriented Dialogue Systems on Spoken
Conversations [87.95711406978157]
This work presents a new benchmark on spoken task-oriented conversations.
We study multi-domain dialogue state tracking and knowledge-grounded dialogue modeling.
Our data set enables speech-based benchmarking of task-oriented dialogue systems.
arXiv Detail & Related papers (2021-09-28T04:51:04Z) - Advances in Multi-turn Dialogue Comprehension: A Survey [51.215629336320305]
We review the previous methods from the perspective of dialogue modeling.
We discuss three typical patterns of dialogue modeling that are widely-used in dialogue comprehension tasks.
arXiv Detail & Related papers (2021-03-04T15:50:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.