Semiparametric Bayesian Networks
- URL: http://arxiv.org/abs/2109.03008v1
- Date: Tue, 7 Sep 2021 11:47:32 GMT
- Title: Semiparametric Bayesian Networks
- Authors: David Atienza, Concha Bielza and Pedro Larra\~naga
- Abstract summary: We introduce semiparametric Bayesian networks that combine parametric and nonparametric conditional probability distributions.
Their aim is to incorporate the bounded complexity of parametric models and the flexibility of nonparametric ones.
- Score: 5.205440005969871
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We introduce semiparametric Bayesian networks that combine parametric and
nonparametric conditional probability distributions. Their aim is to
incorporate the advantages of both components: the bounded complexity of
parametric models and the flexibility of nonparametric ones. We demonstrate
that semiparametric Bayesian networks generalize two well-known types of
Bayesian networks: Gaussian Bayesian networks and kernel density estimation
Bayesian networks. For this purpose, we consider two different conditional
probability distributions required in a semiparametric Bayesian network. In
addition, we present modifications of two well-known algorithms (greedy
hill-climbing and PC) to learn the structure of a semiparametric Bayesian
network from data. To realize this, we employ a score function based on
cross-validation. In addition, using a validation dataset, we apply an
early-stopping criterion to avoid overfitting. To evaluate the applicability of
the proposed algorithm, we conduct an exhaustive experiment on synthetic data
sampled by mixing linear and nonlinear functions, multivariate normal data
sampled from Gaussian Bayesian networks, real data from the UCI repository, and
bearings degradation data. As a result of this experiment, we conclude that the
proposed algorithm accurately learns the combination of parametric and
nonparametric components, while achieving a performance comparable with those
provided by state-of-the-art methods.
Related papers
- Symmetry Discovery for Different Data Types [52.2614860099811]
Equivariant neural networks incorporate symmetries into their architecture, achieving higher generalization performance.
We propose LieSD, a method for discovering symmetries via trained neural networks which approximate the input-output mappings of the tasks.
We validate the performance of LieSD on tasks with symmetries such as the two-body problem, the moment of inertia matrix prediction, and top quark tagging.
arXiv Detail & Related papers (2024-10-13T13:39:39Z) - Network two-sample test for block models [16.597465729143813]
We consider the two-sample testing problem for networks, where the goal is to determine whether two sets of networks originated from the same model.
We adopt the block model (SBM) for network distributions, due to their interpretability and the potential to approximate more general models.
We introduce an efficient algorithm to match estimated network parameters, allowing us to properly combine and contrast information within and across samples, leading to a powerful test.
arXiv Detail & Related papers (2024-06-10T04:28:37Z) - Distributed Variational Inference for Online Supervised Learning [15.038649101409804]
This paper develops a scalable distributed probabilistic inference algorithm.
It applies to continuous variables, intractable posteriors and large-scale real-time data in sensor networks.
arXiv Detail & Related papers (2023-09-05T22:33:02Z) - Joint Bayesian Inference of Graphical Structure and Parameters with a
Single Generative Flow Network [59.79008107609297]
We propose in this paper to approximate the joint posterior over the structure of a Bayesian Network.
We use a single GFlowNet whose sampling policy follows a two-phase process.
Since the parameters are included in the posterior distribution, this leaves more flexibility for the local probability models.
arXiv Detail & Related papers (2023-05-30T19:16:44Z) - On the Effective Number of Linear Regions in Shallow Univariate ReLU
Networks: Convergence Guarantees and Implicit Bias [50.84569563188485]
We show that gradient flow converges in direction when labels are determined by the sign of a target network with $r$ neurons.
Our result may already hold for mild over- parameterization, where the width is $tildemathcalO(r)$ and independent of the sample size.
arXiv Detail & Related papers (2022-05-18T16:57:10Z) - Multi-fidelity Bayesian Neural Networks: Algorithms and Applications [0.0]
We propose a new class of Bayesian neural networks (BNNs) that can be trained using noisy data of variable fidelity.
We apply them to learn function approximations as well as to solve inverse problems based on partial differential equations (PDEs)
arXiv Detail & Related papers (2020-12-19T02:03:53Z) - A similarity-based Bayesian mixture-of-experts model [0.5156484100374058]
We present a new non-parametric mixture-of-experts model for multivariate regression problems.
Using a conditionally specified model, predictions for out-of-sample inputs are based on similarities to each observed data point.
Posterior inference is performed on the parameters of the mixture as well as the distance metric.
arXiv Detail & Related papers (2020-12-03T18:08:30Z) - Distributed Variational Bayesian Algorithms Over Sensor Networks [6.572330981878818]
We propose two novel distributed VB algorithms for general Bayesian inference problem.
The proposed algorithms have excellent performance, which are almost as good as the corresponding centralized VB algorithm relying on all data available in a fusion center.
arXiv Detail & Related papers (2020-11-27T08:12:18Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
We propose a method to fuse posterior distributions learned from heterogeneous datasets.
Our algorithm relies on a mean field assumption for both the fused model and the individual dataset posteriors.
arXiv Detail & Related papers (2020-07-13T03:27:45Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z) - Spatially Adaptive Inference with Stochastic Feature Sampling and
Interpolation [72.40827239394565]
We propose to compute features only at sparsely sampled locations.
We then densely reconstruct the feature map with an efficient procedure.
The presented network is experimentally shown to save substantial computation while maintaining accuracy over a variety of computer vision tasks.
arXiv Detail & Related papers (2020-03-19T15:36:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.