Initialization for Nonnegative Matrix Factorization: a Comprehensive
Review
- URL: http://arxiv.org/abs/2109.03874v1
- Date: Wed, 8 Sep 2021 18:49:41 GMT
- Title: Initialization for Nonnegative Matrix Factorization: a Comprehensive
Review
- Authors: Sajad Fathi Hafshejani and Zahra Moaberfard
- Abstract summary: Non-negative factorization (NMF) has become a popular method for representing meaningful data by extracting a non-negative basis from an non-negative data matrix.
Some numerical results to illustrate the performance of each method are presented.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-negative matrix factorization (NMF) has become a popular method for
representing meaningful data by extracting a non-negative basis feature from an
observed non-negative data matrix. Some of the unique features of this method
in identifying hidden data put this method amongst the powerful methods in the
machine learning area. The NMF is a known non-convex optimization problem and
the initial point has a significant effect on finding an efficient local
solution. In this paper, we investigate the most popular initialization
procedures proposed for NMF so far. We describe each method and present some of
their advantages and disadvantages. Finally, some numerical results to
illustrate the performance of each algorithm are presented.
Related papers
- Contaminated Images Recovery by Implementing Non-negative Matrix
Factorisation [0.0]
We theoretically examine the robustness of the traditional NMF, HCNMF, and L2,1-NMF algorithms and execute sets of experiments to demonstrate the robustness on ORL and Extended YaleB datasets.
Due to the computational cost of these approaches, our final models, such as the HCNMF and L2,1-NMF model, fail to converge within the parameters of this work.
arXiv Detail & Related papers (2022-11-08T13:50:27Z) - Unitary Approximate Message Passing for Matrix Factorization [90.84906091118084]
We consider matrix factorization (MF) with certain constraints, which finds wide applications in various areas.
We develop a Bayesian approach to MF with an efficient message passing implementation, called UAMPMF.
We show that UAMPMF significantly outperforms state-of-the-art algorithms in terms of recovery accuracy, robustness and computational complexity.
arXiv Detail & Related papers (2022-07-31T12:09:32Z) - Finding Rule-Interpretable Non-Negative Data Representation [2.817412580574242]
We present a version of the NMF approach that merges rule-based descriptions with advantages of part-based representation.
The proposed approach provides numerous advantages in tasks such as focused embedding or performing supervised multi-label NMF.
arXiv Detail & Related papers (2022-06-03T10:20:46Z) - Log-based Sparse Nonnegative Matrix Factorization for Data
Representation [55.72494900138061]
Nonnegative matrix factorization (NMF) has been widely studied in recent years due to its effectiveness in representing nonnegative data with parts-based representations.
We propose a new NMF method with log-norm imposed on the factor matrices to enhance the sparseness.
A novel column-wisely sparse norm, named $ell_2,log$-(pseudo) norm, is proposed to enhance the robustness of the proposed method.
arXiv Detail & Related papers (2022-04-22T11:38:10Z) - Adversarially-Trained Nonnegative Matrix Factorization [77.34726150561087]
We consider an adversarially-trained version of the nonnegative matrix factorization.
In our formulation, an attacker adds an arbitrary matrix of bounded norm to the given data matrix.
We design efficient algorithms inspired by adversarial training to optimize for dictionary and coefficient matrices.
arXiv Detail & Related papers (2021-04-10T13:13:17Z) - Feature Weighted Non-negative Matrix Factorization [92.45013716097753]
We propose the Feature weighted Non-negative Matrix Factorization (FNMF) in this paper.
FNMF learns the weights of features adaptively according to their importances.
It can be solved efficiently with the suggested optimization algorithm.
arXiv Detail & Related papers (2021-03-24T21:17:17Z) - Self-supervised Symmetric Nonnegative Matrix Factorization [82.59905231819685]
Symmetric nonnegative factor matrix (SNMF) has demonstrated to be a powerful method for data clustering.
Inspired by ensemble clustering that aims to seek better clustering results, we propose self-supervised SNMF (S$3$NMF)
We take advantage of the sensitivity to code characteristic of SNMF, without relying on any additional information.
arXiv Detail & Related papers (2021-03-02T12:47:40Z) - Nonnegative Matrix Factorization with Toeplitz Penalty [0.0]
Nonnegative Matrix Factorization (NMF) is an unsupervised learning algorithm that produces a linear, parts-based approximation of a data matrix.
We propose a new NMF algorithm that makes use of non-data dependent auxiliary constraints.
arXiv Detail & Related papers (2020-12-07T13:49:23Z) - Algorithms for Nonnegative Matrix Factorization with the
Kullback-Leibler Divergence [20.671178429005973]
Kullback-Leibler (KL) divergence is one of the most widely used objective function for nonnegative matrix factorization (NMF)
We propose three new algorithms that guarantee the non-increasingness of the objective function.
We conduct extensive numerical experiments to provide a comprehensive picture of the performances of the KL NMF algorithms.
arXiv Detail & Related papers (2020-10-05T11:51:39Z) - Positive Semidefinite Matrix Factorization: A Connection with Phase
Retrieval and Affine Rank Minimization [71.57324258813674]
We show that PSDMF algorithms can be designed based on phase retrieval (PR) and affine rank minimization (ARM) algorithms.
Motivated by this idea, we introduce a new family of PSDMF algorithms based on iterative hard thresholding (IHT)
arXiv Detail & Related papers (2020-07-24T06:10:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.