MapRE: An Effective Semantic Mapping Approach for Low-resource Relation
Extraction
- URL: http://arxiv.org/abs/2109.04108v1
- Date: Thu, 9 Sep 2021 09:02:23 GMT
- Title: MapRE: An Effective Semantic Mapping Approach for Low-resource Relation
Extraction
- Authors: Manqing Dong, Chunguang Pan, and Zhipeng Luo
- Abstract summary: We propose a framework considering both label-agnostic and label-aware semantic mapping information for low resource relation extraction.
We show that incorporating the above two types of mapping information in both pretraining and fine-tuning can significantly improve the model performance.
- Score: 11.821464352959454
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Neural relation extraction models have shown promising results in recent
years; however, the model performance drops dramatically given only a few
training samples. Recent works try leveraging the advance in few-shot learning
to solve the low resource problem, where they train label-agnostic models to
directly compare the semantic similarities among context sentences in the
embedding space. However, the label-aware information, i.e., the relation label
that contains the semantic knowledge of the relation itself, is often neglected
for prediction. In this work, we propose a framework considering both
label-agnostic and label-aware semantic mapping information for low resource
relation extraction. We show that incorporating the above two types of mapping
information in both pretraining and fine-tuning can significantly improve the
model performance on low-resource relation extraction tasks.
Related papers
- Automatic Semantic Modeling for Structural Data Source with the Prior
Knowledge from Knowledge Base [15.075047172918547]
We propose a novel method for semantically annotating structured data sources using machine learning, graph matching and modified frequent subgraph mining.
Our approach outperforms two state-of-theart solutions in tricky cases where only a few models are known.
arXiv Detail & Related papers (2022-12-21T10:54:59Z) - SMiLE: Schema-augmented Multi-level Contrastive Learning for Knowledge
Graph Link Prediction [28.87290783250351]
Link prediction is the task of inferring missing links between entities in knowledge graphs.
We propose a novel Multi-level contrastive LEarning framework (SMiLE) to conduct knowledge graph link prediction.
arXiv Detail & Related papers (2022-10-10T17:40:19Z) - Gradient Imitation Reinforcement Learning for Low Resource Relation
Extraction [52.63803634033647]
Low-resource relation Extraction (LRE) aims to extract relation facts from limited labeled corpora when human annotation is scarce.
We develop a Gradient Imitation Reinforcement Learning method to encourage pseudo label data to imitate the gradient descent direction on labeled data.
We also propose a framework called GradLRE, which handles two major scenarios in low-resource relation extraction.
arXiv Detail & Related papers (2021-09-14T03:51:15Z) - Learning from Noisy Labels for Entity-Centric Information Extraction [17.50856935207308]
We propose a simple co-regularization framework for entity-centric information extraction.
These models are jointly optimized with task-specific loss, and are regularized to generate similar predictions.
In the end, we can take any of the trained models for inference.
arXiv Detail & Related papers (2021-04-17T22:49:12Z) - Representation Learning for Weakly Supervised Relation Extraction [19.689433249830465]
In this thesis, we present several novel unsupervised pre-training models to learn the distributed text representation features.
The experiments have demonstrated that this type of feature, combine with the traditional hand-crafted features, could improve the performance of the logistic classification model for relation extraction.
arXiv Detail & Related papers (2021-04-10T12:22:25Z) - Prototypical Representation Learning for Relation Extraction [56.501332067073065]
This paper aims to learn predictive, interpretable, and robust relation representations from distantly-labeled data.
We learn prototypes for each relation from contextual information to best explore the intrinsic semantics of relations.
Results on several relation learning tasks show that our model significantly outperforms the previous state-of-the-art relational models.
arXiv Detail & Related papers (2021-03-22T08:11:43Z) - Learning Relation Prototype from Unlabeled Texts for Long-tail Relation
Extraction [84.64435075778988]
We propose a general approach to learn relation prototypes from unlabeled texts.
We learn relation prototypes as an implicit factor between entities.
We conduct experiments on two publicly available datasets: New York Times and Google Distant Supervision.
arXiv Detail & Related papers (2020-11-27T06:21:12Z) - RH-Net: Improving Neural Relation Extraction via Reinforcement Learning
and Hierarchical Relational Searching [2.1828601975620257]
We propose a novel framework named RH-Net, which utilizes Reinforcement learning and Hierarchical relational searching module to improve relation extraction.
We then propose the hierarchical relational searching module to share the semantics from correlative instances between data-rich and data-poor classes.
arXiv Detail & Related papers (2020-10-27T12:50:27Z) - One-shot Learning for Temporal Knowledge Graphs [49.41854171118697]
We propose a one-shot learning framework for link prediction in temporal knowledge graphs.
Our proposed method employs a self-attention mechanism to effectively encode temporal interactions between entities.
Our experiments show that the proposed algorithm outperforms the state of the art baselines for two well-studied benchmarks.
arXiv Detail & Related papers (2020-10-23T03:24:44Z) - Relation-Guided Representation Learning [53.60351496449232]
We propose a new representation learning method that explicitly models and leverages sample relations.
Our framework well preserves the relations between samples.
By seeking to embed samples into subspace, we show that our method can address the large-scale and out-of-sample problem.
arXiv Detail & Related papers (2020-07-11T10:57:45Z) - A Simple Approach to Case-Based Reasoning in Knowledge Bases [56.661396189466664]
We present a surprisingly simple yet accurate approach to reasoning in knowledge graphs (KGs) that requires emphno training, and is reminiscent of case-based reasoning in classical artificial intelligence (AI)
Consider the task of finding a target entity given a source entity and a binary relation.
Our non-parametric approach derives crisp logical rules for each query by finding multiple textitgraph path patterns that connect similar source entities through the given relation.
arXiv Detail & Related papers (2020-06-25T06:28:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.