Space Meets Time: Local Spacetime Neural Network For Traffic Flow
Forecasting
- URL: http://arxiv.org/abs/2109.05225v1
- Date: Sat, 11 Sep 2021 09:04:35 GMT
- Title: Space Meets Time: Local Spacetime Neural Network For Traffic Flow
Forecasting
- Authors: Song Yang, Jiamou Liu, Kaiqi Zhao
- Abstract summary: We argue that such correlations are universal and play a pivotal role in traffic flow.
We propose a new spacetime interval learning framework that constructs a local-spacetime context of a traffic sensor.
The proposed STNN model can be applied on any unseen traffic networks.
- Score: 11.495992519252585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic flow forecasting is a crucial task in urban computing. The challenge
arises as traffic flows often exhibit intrinsic and latent spatio-temporal
correlations that cannot be identified by extracting the spatial and temporal
patterns of traffic data separately. We argue that such correlations are
universal and play a pivotal role in traffic flow. We put forward spacetime
interval learning as a paradigm to explicitly capture these correlations
through a unified analysis of both spatial and temporal features. Unlike the
state-of-the-art methods, which are restricted to a particular road network, we
model the universal spatio-temporal correlations that are transferable from
cities to cities. To this end, we propose a new spacetime interval learning
framework that constructs a local-spacetime context of a traffic sensor
comprising the data from its neighbors within close time points. Based on this
idea, we introduce spacetime neural network (STNN), which employs novel
spacetime convolution and attention mechanism to learn the universal
spatio-temporal correlations. The proposed STNN captures local traffic
patterns, which does not depend on a specific network structure. As a result, a
trained STNN model can be applied on any unseen traffic networks. We evaluate
the proposed STNN on two public real-world traffic datasets and a simulated
dataset on dynamic networks. The experiment results show that STNN not only
improves prediction accuracy by 15% over state-of-the-art methods, but is also
effective in handling the case when the traffic network undergoes dynamic
changes as well as the superior generalization capability.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - ST-RetNet: A Long-term Spatial-Temporal Traffic Flow Prediction Method [1.8531577178922987]
We propose an innovative model called Spatial-Temporal Retentive Network (ST-RetNet)
At the spatial scale, we integrate a topological graph structure into Spatial Retentive Network(S-RetNet), utilizing an adaptive adjacency matrix to extract dynamic spatial features of the road network.
At the temporal scale, we propose the Temporal Retentive Network(T-RetNet), which has been demonstrated to excel in capturing long-term dependencies in traffic flow patterns.
arXiv Detail & Related papers (2024-07-13T03:52:32Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
We propose an Adaptive Hierarchical SpatioTemporal Network (AHSTN) to promote traffic forecasting.
AHSTN exploits the spatial hierarchy and modeling multi-scale spatial correlations.
Experiments on two real-world datasets show that AHSTN achieves better performance over several strong baselines.
arXiv Detail & Related papers (2023-06-15T14:50:27Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - STLGRU: Spatio-Temporal Lightweight Graph GRU for Traffic Flow
Prediction [0.40964539027092917]
We propose STLGRU, a novel traffic forecasting model for predicting traffic flow accurately.
Our proposed STLGRU can effectively capture dynamic local and global spatial-temporal relations of traffic networks.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2022-12-08T20:24:59Z) - STJLA: A Multi-Context Aware Spatio-Temporal Joint Linear Attention
Network for Traffic Forecasting [7.232141271583618]
We propose a novel deep learning model for traffic forecasting named inefficient-Context Spatio-Temporal Joint Linear Attention (SSTLA)
SSTLA applies linear attention to a joint graph to capture global dependence between alltemporal- nodes efficiently.
Experiments on two real-world traffic datasets, England and Temporal7, demonstrate that our STJLA can achieve 9.83% and 3.08% 3.08% accuracy in MAE measure over state-of-the-art baselines.
arXiv Detail & Related papers (2021-12-04T06:39:18Z) - SST-GNN: Simplified Spatio-temporal Traffic forecasting model using
Graph Neural Network [2.524966118517392]
We have designed a simplified S-temporal GNN(SST-GNN) that effectively encodes the dependency by separately aggregating different neighborhood.
We have shown that our model has significantly outperformed the state-of-the-art models on three real-world traffic datasets.
arXiv Detail & Related papers (2021-03-31T18:28:44Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
A graph-based framework called SMART is proposed to model and keep track of the statistics of vehicle-to-temporal (V2I) communication latency across a large geographical area.
We develop a graph reconstruction-based approach using a graph convolutional network integrated with a deep Q-networks algorithm.
Our results show that the proposed method can significantly improve both the accuracy and efficiency for modeling and the latency performance of large vehicular networks.
arXiv Detail & Related papers (2021-03-13T06:56:29Z) - TSSRGCN: Temporal Spectral Spatial Retrieval Graph Convolutional Network
for Traffic Flow Forecasting [41.87633457352356]
This paper proposes a neural network model that focuses on the globality and locality of traffic networks.
Experiments on two real-world datasets show that the model can scrutinize the spatial-temporal correlation of traffic data.
arXiv Detail & Related papers (2020-11-30T09:21:43Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.