Zero-field magnetometry using hyperfine-biased nitrogen-vacancy centers
near diamond surfaces
- URL: http://arxiv.org/abs/2109.05445v1
- Date: Sun, 12 Sep 2021 06:37:52 GMT
- Title: Zero-field magnetometry using hyperfine-biased nitrogen-vacancy centers
near diamond surfaces
- Authors: Ning Wang, Chu-Feng Liu, Jing-Wei Fan, Xi Feng, Weng-Hang Leong, Amit
Finkler, Andrej Denisenko, J\"org Wrachtrup, Quan Li, Ren-Bao Liu
- Abstract summary: We show that a 130 MHz coupling from a first-shell 13C nuclear spin can provide an effective bias field to an NV center spin.
With the charge noises suppressed by the strong hyperfine field, the ac magnetometry under zero field also reaches the limit set by decoherence.
The hyperfine-bias enhanced zero-field magnetometry can be combined with dynamical decoupling to enhance single-molecule magnetic resonance spectroscopy.
- Score: 5.189354274663932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Shallow nitrogen-vacancy (NV) centers in diamond are promising for
nano-magnetometry for they can be placed proximate to targets. To study the
intrinsic magnetic properties, zero-field magnetometry is desirable. However,
for shallow NV centers under zero field, the strain near diamond surfaces would
cause level anti-crossing between the spin states, leading to clock transitions
whose frequencies are insensitive to magnetic signals. Furthermore, the charge
noises from the surfaces would induce extra spin decoherence and hence reduce
the magnetic sensitivity. Here we demonstrate that the relatively strong
hyperfine coupling (130 MHz) from a first-shell 13C nuclear spin can provide an
effective bias field to an NV center spin so that the clock-transition
condition is broken and the charge noises are suppressed. The hyperfine bias
enhances the dc magnetic sensitivity by a factor of 22 in our setup. With the
charge noises suppressed by the strong hyperfine field, the ac magnetometry
under zero field also reaches the limit set by decoherence due to the nuclear
spin bath. In addition, the 130 MHz splitting of the NV center spin transitions
allows relaxometry of magnetic noises simultaneously at two well-separated
frequencies (~2.870 +/- 0.065 GHz), providing (low-resolution) spectral
information of high-frequency noises under zero field. The hyperfine-bias
enhanced zero-field magnetometry can be combined with dynamical decoupling to
enhance single-molecule magnetic resonance spectroscopy and to improve the
frequency resolution in nanoscale magnetic resonance imaging.
Related papers
- Universal and robust dynamic decoupling controls for zero-field magnetometry by using molecular clock sensors [0.0]
Color centers in diamond and silicon carbide (SiC) and molecular spins through a host matrix control are promising for nanoscale quantum sensing.
However, large transverse zero-field splitting (ZFS) is often inevitable due to their intrinsic symmetry and/or the high local strains of the host matrix.
We address this challenge by employing a combination of radio-frequency (RF) field driving along the orientation and microwave (MW) dynamic pulse sequences.
arXiv Detail & Related papers (2024-10-02T12:33:14Z) - Scanning spin probe based on magnonic vortex quantum cavities [0.0]
We propose the realization of a nanoscale scanning electron paramagnetic resonance sensor using a vortex core in a thin-film disc.
The vortex core can be displaced by using external magnetic fields of a few mT, enabling EPR scanning microscopy with large spatial resolution.
Vortex nanocavities could also attain strong coupling to individual spin molecular qubits, with potential applications to mediate qubit-qubit interactions.
arXiv Detail & Related papers (2024-01-12T12:53:49Z) - Imaging magnetism evolution of magnetite to megabar pressure range with
quantum sensors in diamond anvil cell [57.91882523720623]
We develop an in-situ magnetic detection technique at megabar pressures with high sensitivity and sub-microscale spatial resolution.
We observe the macroscopic magnetic transition of Fe3O4 in the megabar pressure range from strong ferromagnetism (alpha-Fe3O4) to weak ferromagnetism (beta-Fe3O4) and finally to non-magnetism (gamma-Fe3O4)
The presented method can potentially investigate the spin-orbital coupling and magnetism-superconductivity competition in magnetic systems.
arXiv Detail & Related papers (2023-06-13T15:19:22Z) - Fiber-coupled Diamond Magnetometry with an Unshielded 30
pT/$\sqrt{\textrm{Hz}}$ Sensitivity [0.0]
We present a fiber-coupled NVC magnetometer with an unshielded sensitivity of (30 $pm$ 10) pT/$sqrttextrmHz$ in a (10 - 500)-Hz frequency range.
This sensitivity is enabled by a relatively high green-to-red photon conversion efficiency, the use of a [100] bias field alignment, microwave and lock-in amplifier (LIA) parameter optimisation, as well as a balanced hyperfine excitation scheme.
The magnetometer is capable of detecting signals from sources such as a vacuum pump up to 2 m away, with
arXiv Detail & Related papers (2022-11-16T19:35:51Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - Optically induced static magnetic field in ensemble of nitrogen-vacancy
centers in diamond [4.734663513676815]
Local magnetic field at the nanoscale is desired for many applications such as spin-qubit-based quantum memories.
Here, we demonstrate photonic spin density (PSD) induced effective static magnetic field for an ensemble of nitrogen-vacancy (NV) centers in bulk diamond.
arXiv Detail & Related papers (2022-05-06T04:38:10Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Continuous-Wave Frequency Upconversion with a Molecular Optomechanical
Nanocavity [46.43254474406406]
We use molecular cavity optomechanics to demonstrate upconversion of sub-microwatt continuous-wave signals at $sim$32THz into the visible domain at ambient conditions.
The device consists in a plasmonic nanocavity hosting a small number of molecules. The incoming field resonantly drives a collective molecular vibration, which imprints an optomechanical modulation on a visible pump laser.
arXiv Detail & Related papers (2021-07-07T06:23:14Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Cross-relaxation studies with optically detected magnetic resonances in
nitrogen-vacancy centers in diamond in an external magnetic field [0.0]
Cross-relaxation between nitrogen-vacancy centers and substitutional nitrogen in a diamond crystal was studied.
Optically detected magnetic resonance signals (ODMR) can be used to measure these signals successfully.
arXiv Detail & Related papers (2020-07-01T13:23:22Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.