Machine-Learned Prediction Equilibrium for Dynamic Traffic Assignment
- URL: http://arxiv.org/abs/2109.06713v1
- Date: Tue, 14 Sep 2021 14:27:09 GMT
- Title: Machine-Learned Prediction Equilibrium for Dynamic Traffic Assignment
- Authors: Lukas Graf, Tobias Harks, Kostas Kollias, Michael Markl
- Abstract summary: We study a dynamic traffic assignment model, where agents base their instantaneous routing decisions on real-time delay predictions.
We formulate a mathematically concise model and derive properties of the predictors that ensure a dynamic prediction equilibrium exists.
- Score: 3.704832909610284
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study a dynamic traffic assignment model, where agents base their
instantaneous routing decisions on real-time delay predictions. We formulate a
mathematically concise model and derive properties of the predictors that
ensure a dynamic prediction equilibrium exists. We demonstrate the versatility
of our framework by showing that it subsumes the well-known full information
and instantaneous information models, in addition to admitting further
realistic predictors as special cases. We complement our theoretical analysis
by an experimental study, in which we systematically compare the induced
average travel times of different predictors, including a machine-learning
model trained on data gained from previously computed equilibrium flows, both
on a synthetic and a real road network.
Related papers
- Traj-Explainer: An Explainable and Robust Multi-modal Trajectory Prediction Approach [12.60529039445456]
Navigating complex traffic environments has been significantly enhanced by advancements in intelligent technologies, enabling accurate environment perception and trajectory prediction for automated vehicles.
Existing research often neglects the consideration of the joint reasoning of scenario agents and lacks interpretability in trajectory prediction models.
An explainability-oriented trajectory prediction model is designed in this work, named Explainable Diffusion Conditional based Multimodal Trajectory Prediction Traj-Explainer.
arXiv Detail & Related papers (2024-10-22T08:17:33Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - CogDPM: Diffusion Probabilistic Models via Cognitive Predictive Coding [62.075029712357]
This work introduces the Cognitive Diffusion Probabilistic Models (CogDPM)
CogDPM features a precision estimation method based on the hierarchical sampling capabilities of diffusion models and weight the guidance with precision weights estimated by the inherent property of diffusion models.
We apply CogDPM to real-world prediction tasks using the United Kindom precipitation and surface wind datasets.
arXiv Detail & Related papers (2024-05-03T15:54:50Z) - Towards Generalizable and Interpretable Motion Prediction: A Deep
Variational Bayes Approach [54.429396802848224]
This paper proposes an interpretable generative model for motion prediction with robust generalizability to out-of-distribution cases.
For interpretability, the model achieves the target-driven motion prediction by estimating the spatial distribution of long-term destinations.
Experiments on motion prediction datasets validate that the fitted model can be interpretable and generalizable.
arXiv Detail & Related papers (2024-03-10T04:16:04Z) - Evaluating Pedestrian Trajectory Prediction Methods with Respect to Autonomous Driving [0.9217021281095907]
In this paper, we assess the state of the art in pedestrian trajectory prediction within the context of generating single trajectories.
The evaluation is conducted on the widely-used ETH/UCY dataset where the Average Displacement Error (ADE) and the Final Displacement Error (FDE) are reported.
arXiv Detail & Related papers (2023-08-09T19:21:50Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Transforming Autoregression: Interpretable and Expressive Time Series
Forecast [0.0]
We propose Autoregressive Transformation Models (ATMs), a model class inspired from various research directions.
ATMs unite expressive distributional forecasts using a semi-parametric distribution assumption with an interpretable model specification.
We demonstrate the properties of ATMs both theoretically and through empirical evaluation on several simulated and real-world forecasting datasets.
arXiv Detail & Related papers (2021-10-15T17:58:49Z) - Test-time Collective Prediction [73.74982509510961]
Multiple parties in machine learning want to jointly make predictions on future test points.
Agents wish to benefit from the collective expertise of the full set of agents, but may not be willing to release their data or model parameters.
We explore a decentralized mechanism to make collective predictions at test time, leveraging each agent's pre-trained model.
arXiv Detail & Related papers (2021-06-22T18:29:58Z) - Learning Accurate Long-term Dynamics for Model-based Reinforcement
Learning [7.194382512848327]
We propose a new parametrization to supervised learning on state-action data to stably predict at longer horizons.
Our results in simulated and experimental robotic tasks show that our trajectory-based models yield significantly more accurate long term predictions.
arXiv Detail & Related papers (2020-12-16T18:47:37Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - The Importance of Balanced Data Sets: Analyzing a Vehicle Trajectory
Prediction Model based on Neural Networks and Distributed Representations [0.0]
We investigate the composition of training data in vehicle trajectory prediction.
We show that the models employing our semantic vector representation outperform the numerical model when trained on an adequate data set.
arXiv Detail & Related papers (2020-09-30T20:00:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.