S3LAM: Structured Scene SLAM
- URL: http://arxiv.org/abs/2109.07339v1
- Date: Wed, 15 Sep 2021 14:47:42 GMT
- Title: S3LAM: Structured Scene SLAM
- Authors: Mathieu Gonzalez, Eric Marchand, Amine Kacete and J\'er\^ome Royan
- Abstract summary: We propose a new general SLAM system that uses the semantic segmentation of objects and structures in the scene.
Our contribution is threefold: i) A new SLAM system based on ORB-SLAM2 that creates a semantic map made of points corresponding to objects instances and structures in the scene.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new general SLAM system that uses the semantic segmentation of
objects and structures in the scene. Semantic information is relevant as it
contains high level information which may make SLAM more accurate and robust.
Our contribution is threefold: i) A new SLAM system based on ORB-SLAM2 that
creates a semantic map made of clusters of points corresponding to objects
instances and structures in the scene. ii) A modification of the classical
Bundle Adjustment formulation to constrain each cluster using geometrical
priors, which improves both camera localization and reconstruction and enables
a better understanding of the scene. iii) A new Bundle Adjustment formulation
at the level of clusters to improve the convergence of classical Bundle
Adjustment. We evaluate our approach on several sequences from a public dataset
and show that, with respect to ORB-SLAM2 it improves camera pose estimation.
Related papers
- A3S: A General Active Clustering Method with Pairwise Constraints [66.74627463101837]
A3S features strategic active clustering adjustment on the initial cluster result, which is obtained by an adaptive clustering algorithm.
In extensive experiments across diverse real-world datasets, A3S achieves desired results with significantly fewer human queries.
arXiv Detail & Related papers (2024-07-14T13:37:03Z) - CP-SLAM: Collaborative Neural Point-based SLAM System [54.916578456416204]
This paper presents a collaborative implicit neural localization and mapping (SLAM) system with RGB-D image sequences.
In order to enable all these modules in a unified framework, we propose a novel neural point based 3D scene representation.
A distributed-to-centralized learning strategy is proposed for the collaborative implicit SLAM to improve consistency and cooperation.
arXiv Detail & Related papers (2023-11-14T09:17:15Z) - NeuSE: Neural SE(3)-Equivariant Embedding for Consistent Spatial
Understanding with Objects [53.111397800478294]
We present NeuSE, a novel Neural SE(3)-Equivariant Embedding for objects.
NeuSE serves as a compact point cloud surrogate for complete object models.
Our proposed SLAM paradigm, using NeuSE for object shape and pose characterization, can operate independently or in conjunction with typical SLAM systems.
arXiv Detail & Related papers (2023-03-13T17:30:43Z) - Structure PLP-SLAM: Efficient Sparse Mapping and Localization using
Point, Line and Plane for Monocular, RGB-D and Stereo Cameras [13.693353009049773]
This paper demonstrates a visual SLAM system that utilizes point and line cloud for robust camera localization, simultaneously, with an embedded piece-wise planar reconstruction (PPR) module.
We address the challenge of reconstructing geometric primitives with scale ambiguity by proposing several run-time optimizations on the reconstructed lines and planes.
The results show that our proposed SLAM tightly incorporates the semantic features to boost both tracking as well as backend optimization.
arXiv Detail & Related papers (2022-07-13T09:05:35Z) - NICE-SLAM: Neural Implicit Scalable Encoding for SLAM [112.6093688226293]
NICE-SLAM is a dense SLAM system that incorporates multi-level local information by introducing a hierarchical scene representation.
Compared to recent neural implicit SLAM systems, our approach is more scalable, efficient, and robust.
arXiv Detail & Related papers (2021-12-22T18:45:44Z) - DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene
Context Graph and Relation-based Optimization [66.25948693095604]
We propose a novel method for panoramic 3D scene understanding which recovers the 3D room layout and the shape, pose, position, and semantic category for each object from a single full-view panorama image.
Experiments demonstrate that our method outperforms existing methods on panoramic scene understanding in terms of both geometry accuracy and object arrangement.
arXiv Detail & Related papers (2021-08-24T13:55:29Z) - DSP-SLAM: Object Oriented SLAM with Deep Shape Priors [16.867669408751507]
We propose an object-oriented SLAM system that builds a rich and accurate joint map of dense 3D models for foreground objects.
DSP-SLAM takes as input the 3D point cloud reconstructed by a feature-based SLAM system.
Our evaluation shows improvements in object pose and shape reconstruction with respect to recent deep prior-based reconstruction methods.
arXiv Detail & Related papers (2021-08-21T10:00:12Z) - Unveiling the Potential of Structure-Preserving for Weakly Supervised
Object Localization [71.79436685992128]
We propose a two-stage approach, termed structure-preserving activation (SPA), towards fully leveraging the structure information incorporated in convolutional features for WSOL.
In the first stage, a restricted activation module (RAM) is designed to alleviate the structure-missing issue caused by the classification network.
In the second stage, we propose a post-process approach, termed self-correlation map generating (SCG) module to obtain structure-preserving localization maps.
arXiv Detail & Related papers (2021-03-08T03:04:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.